Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, Khan NA
    Parasitol Res, 2020 Jul;119(7):2351-2358.
    PMID: 32451717 DOI: 10.1007/s00436-020-06711-6
    Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.
    Matched MeSH terms: Cell Division/genetics
  2. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Cell Division/physiology
  3. Jayaram G, Lamba S, Kakar A
    Malays J Pathol, 1993 Dec;15(2):131-6.
    PMID: 8065174
    Seventy-eight symptomatic females without palpable breast lumps were subjected to bilateral four quadrant fine needle aspiration cytology. Cytological evidence of an epithelial proliferative lesion was seen in 44 of these cases. Based on the cytological evidence of proliferation, the site for open biopsy was determined. Histopathological study of the breast biopsies in these patients showed proliferative disease without atypia (PDWA) in 40 cases, atypical ductal hyperplasia (ADH) in two, atypical lobular hyperplasia (ALH) in one and ADH with ALH in one case. Cytology was thus useful in establishing the presence of proliferative activity, commenting on the extent of proliferation, and thereby roughly mapping out the area of the breast most suitable for biopsy. On cytological grounds, it was not possible to distinguish the atypical hyperplastic lesions from the proliferative diseases without atypia.
    Matched MeSH terms: Cell Division/physiology
  4. Sabran A, Kumolosasi E, Jantan I, Jamal JA, Azmi N, Jasamai M
    Saudi Pharm J, 2021 Jan;29(1):73-84.
    PMID: 33603542 DOI: 10.1016/j.jsps.2020.12.011
    Background: Phytoestrogens are polyphenolic plant compounds which are structurally similar to the endogenous mammalian estrogen, 17β-estradiol. Annexin A1 (ANXA1) is an endogenous protein which inhibits cyclo-oxygenase 2 (COX-2) and phospholipase A2, signal transduction, DNA replication, cell transformation, and mediation of apoptosis.

    Objective: This study aimed to determine the effects of selected phytoestrogens on annexin A1 (ANXA1) expression, mode of cell death and cell cycle arrest in different human leukemic cell lines.

    Methods: Cells viability were examined by MTT assay and ANXA1 quantification via Enzyme-linked Immunosorbent Assay. Cell cycle and apoptosis were examined by flow cytometer and phagocytosis effect was evaluated using haematoxylin-eosin staining.

    Results: Coumestrol significantly (p cells and genistein significantly (p cells, meanwhile estradiol and daidzein induced similar reduction in U937 and Jurkat cells. Coumestrol and daidzein induced apoptosis in K562 and Jurkat cells, while genistein and estradiol induced apoptosis in all tested cells. Coumestrol and estradiol induced cell cycle arrest at G2/M phase in K562 and Jurkat cells with an addition of U937 cells for estradiol. Genistein induced cell cycle arrest at S phase for both K562 and Jurkat cells. However, daidzein induced cell cycle arrest at G0/G1 phase in K562, and G2/M phase of Jurkat cells. Coumestrol, genistein and estradiol induced phagocytosis in all tested cells but daidzein induced significant (p cells only.

    Conclusion: The selected phytoestrogens induced cell cycle arrest, apoptosis and phagocytosis and at the same time they reduced ANXA1 level in the tested cells. The IC50 value of phytoestrogens was undetectable at the concentrations tested, their ability to induce leukemic cells death may be related with their ability to reduce the levels of ANXA1. These findings can be used as a new approach in cancer treatment particularly in leukemia.

    Matched MeSH terms: Cell Division
  5. Philip R, Dinsuhaimi S, Rosdan S, Samsudin AR, Shamsuria O, Mohd Zaki S, et al.
    Med J Malaysia, 2004 May;59 Suppl B:95-6.
    PMID: 15468835
    Matched MeSH terms: Cell Division/drug effects*
  6. Khazaei S, Abdul Hamid R, Ramachandran V, Mohd Esa N, Pandurangan AK, Danazadeh F, et al.
    PMID: 29250124 DOI: 10.1155/2017/1468957
    Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
    Matched MeSH terms: Cell Division
  7. Chan KM, Rajab NF, Ishak MH, Ali AM, Yusoff K, Din LB, et al.
    Chem Biol Interact, 2006 Feb 1;159(2):129-40.
    PMID: 16297902
    Restenosis represents a major impediment to the success of coronary angioplasty. Abnormal proliferation of vascular smooth muscle cells (VSMCs) has been shown to be an important process in the pathogenesis of restenosis. A number of agents, particularly rapamycin and paclitaxel, have been shown to impact on this process. This study was carried out to determine the mechanisms of cytotoxicity of goniothalamin (GN) on VSMCs. Results from MTT cytotoxicity assay showed that the IC(50) for GN was 4.4 microg/ml (22 microM), which was lower compared to the clinically used rapamycin (IC(50) of 25 microg/ml [27.346 microM]). This was achieved primarily via apoptosis where up to 25.83 +/- 0.44% of apoptotic cells were detected after 72 h treatment with GN. In addition, GN demonstrated similar effects as rapamycin in inhibiting VSMCs proliferation using bromodeoxyuridine (BrdU) cell proliferation assay after 72 h treatment at IC(50) concentration (p > 0.05). In order to understand the mechanisms of GN, DNA damage detection using comet assay was determined at 2h post-treatment with GN. Our results showed that there was a concentration-dependent increase in DNA damage in VSMCs prior to cytotoxicity. Moreover, GN effects were comparable to rapamycin. In conclusion, our data show that GN initially induces DNA damage which subsequently leads to cytotoxicity primarily via apoptosis in VSMCs.
    Matched MeSH terms: Cell Division
  8. Fatimah SS, Tan GC, Chua K, Fariha MM, Tan AE, Hayati AR
    Microvasc Res, 2013 Mar;86:21-9.
    PMID: 23261754 DOI: 10.1016/j.mvr.2012.12.004
    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs.
    Matched MeSH terms: Cell Division
  9. Chindera K, Mahato M, Kumar Sharma A, Horsley H, Kloc-Muniak K, Kamaruzzaman NF, et al.
    Sci Rep, 2016;6:23121.
    PMID: 26996206 DOI: 10.1038/srep23121
    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.
    Matched MeSH terms: Cell Division
  10. Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, et al.
    Front Pharmacol, 2019;10:820.
    PMID: 31402861 DOI: 10.3389/fphar.2019.00820
    Cancer, a complex yet common disease, is caused by uncontrolled cell division and abnormal cell growth due to a variety of gene mutations. Seeking effective treatments for cancer is a major research focus, as the incidence of cancer is on the rise and drug resistance to existing anti-cancer drugs is major concern. Natural products have the potential to yield unique molecules and combinations of substances that may be effective against cancer with relatively low toxicity/better side effect profile compared to standard anticancer therapy. Drug discovery work with natural products has demonstrated that natural compounds display a wide range of biological activities correlating to anticancer effects. In this review, we discuss formononetin (C16H12O4), which originates mainly from red clovers and the Chinese herb Astragalus membranaceus. The compound comes from a class of 7-hydroisoflavones with a substitution of methoxy group at position 4. Formononetin elicits antitumorigenic properties in vitro and in vivo by modulating numerous signaling pathways to induce cell apoptosis (by intrinsic pathway involving Bax, Bcl-2, and caspase-3 proteins) and cell cycle arrest (by regulating mediators like cyclin A, cyclin B1, and cyclin D1), suppress cell proliferation [by signal transducer and activator of transcription (STAT) activation, phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) signaling pathway], and inhibit cell invasion [by regulating growth factors vascular endothelial growth factor (VEGF) and Fibroblast growth factor 2 (FGF2), and matrix metalloproteinase (MMP)-2 and MMP-9 proteins]. Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubicin, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect. Compiling the evidence thus far highlights the potential of formononetin to be a promising candidate for chemoprevention and chemotherapy.
    Matched MeSH terms: Cell Division
  11. Hashim N, Sabudin S, Ibrahim S, Zin NM, Bakar SH, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:103-4.
    PMID: 15468839
    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.
    Matched MeSH terms: Cell Division/drug effects*
  12. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Cell Division/physiology
  13. Buskaran K, Bullo S, Hussein MZ, Masarudin MJ, Mohd Moklas MA, Fakurazi S
    Materials (Basel), 2021 Feb 09;14(4).
    PMID: 33572054 DOI: 10.3390/ma14040817
    Liver cancer is listed as the fifth-ranked cancer, responsible for 9.1% of all cancer deaths globally due to its assertive nature and poor survival rate. To overcome this obstacle, efforts have been made to ensure effective cancer therapy via nanotechnology utilization. Recent studies have shown that functionalized graphene oxide (GO)-loaded protocatechuic acid has shown some anticancer activities in both passive and active targeting. The nanocomposites' physicochemical characterizations were conducted. A lactate dehydrogenase experiment was conducted to estimate the severity of cell damage. Subsequently, a clonogenic assay was carried out to examine the colony-forming ability during long-term exposure of the nanocomposites. The Annexin V/ propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Following the intervention of nanocomposites, cell cycle arrest was ascertained at G2/M phase. There was depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. Finally, the proteomic profiling array and quantitative reverse transcription polymerase chain reaction revealed the expression of pro-apoptotic and anti-apoptotic proteins induced by graphene oxide conjugated PEG loaded with protocatechuic acid drug folic acid coated nanocomposite (GOP-PCA-FA) in HepG2 cells. In conclusion, GOP-PCA-FA nanocomposites treated HepG2 cells exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid and GOP-PCA nanocomposites, due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Cell Division
  14. Pihie AH, Stanslas J, Din LB
    Anticancer Res, 1998 May-Jun;18(3A):1739-43.
    PMID: 9673398
    The antiproliferative activity of a styrylpyrone derivative (SPD) plant extract, was studied in three different human breast cancer cell lines in culture, and was compared with tamoxifen. The number of living cells was evaluated by Methylene Blue staining technique. SPD showed strong antiproliferative activity in estrogen receptor (ER) and progestin receptor (PgR) positive MCF-7 cells (EC50 = 6.30 x 10(-7) M) and receptor-negative MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but it partially inhibited the high progestin receptor positive T47D cells (EC50 = 1.58 x 10(-6) M). Whereas tamoxifen, a nonsteroidal antiestrogen exhibited strong inhibition on MCF-7 cells (EC50 = 1.41 x 10(-6) M) and partial inhibition on T47D cells (EC50 = 2.5 x 10(-6) M), but did not affect the MDA-MB-231 cells in the concentration range 0.1 nM-1 microM (EC50 = 5.01 microM). At the same concentration range SPD and tamoxifen did not inhibit the proliferation of normal human liver cell line CCL 13 and normal bovine kidney MDBK; whereas adriamycin, a common chemotherapy drug for the treatment of advance cancer, caused 95% inhibition at 10(-6) M. Competitive binding studies showed SPD had no ability to inhibit the binding of [3H]estradiol and [3H]progesterone to ER and PgR, respectively but, tamoxifen exhibited affinity for ER. Therefore, it can be concluded that the antiproliferative activity of SPD was selective towards breast cancer cell lines and not mediated by ER or PgR.
    Matched MeSH terms: Cell Division/drug effects
  15. Nesaretnam K, Dorasamy S, Darbre PD
    Int J Food Sci Nutr, 2000;51 Suppl:S95-103.
    PMID: 11271861
    The vitamin E component of palm oil provides a rich source of tocotrienols which have been shown previously to be growth inhibitory to two human breast cancer cell lines: responsive MCF7 cells and unresponsive MDA-MB-231 cells. Data presented here shows that the tocotrienol-rich fraction (TRF) of palm oil and individual fractions (alpha, gamma and delta) can also inhibit the growth of another responsive human breast cancer cell line, ZR-75-1. At low concentrations in the absence of oestrogen tocotrienols stimulated growth of the ZR-75-1 cells, but at higher concentrations in the presence as well as in the absence of oestradiol, tocotrienols inhibited cell growth strongly. As for MCF7 cells, alpha-tocopherol had no effect on growth of the ZR-75-1 cells in either the absence or presence of oestradiol. In studying the effects of tocotrienols in combination with antioestrogens, it was found that TRF could further inhibit growth of ZR-75-1 cells in the presence of tamoxifen (10(-7) M and 10(-8) M). Individual tocotrienol fractions (alpha, gamma, delta) could inhibit growth of ZR-75-1 cells in the presence of 10(-8) M oestradiol and 10(-8) M pure antioestrogen ICI 164,384. The immature mouse uterine weight bioassay confirmed that TRF could not exert oestrogen antagonist action in vivo. These results provide evidence of wider growth-inhibitory effects of tocotrienols beyond MCF7 and MDA-MB-231 cells, and with an oestrogen-independent mechanism of action, suggest a possible clinical advantage in combining administration of tocotrienols with antioestrogen therapy.
    Matched MeSH terms: Cell Division/drug effects
  16. Teoh, Chul Peng, Koh, Soon Peng, Clemente Michael Wong Vui Ling
    MyJurnal
    Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. It has an optimal growth in yeast peptone dextrose (YPD) and yeast mould (YM) broth media but not in potato dextrose (PD) broth medium. Early phase G. antarctica PI12 cells had elongated-shape and became oval-shaped as they aged. G. antarctica PI12 exhibited bipolar budding and formed a chain of cells during the lag and early exponential phases. The number of chains decreased as the yeast aged. It appeared mainly as a single cell at the stationary phase, and a small number of them still produced buds. Some cells at the stationary phase entered the quiescence state (G0) as a longterm survival strategy. The G. antarctica PI12 cell size decreased when they entered the stationary phase. G. antarctica PI12 was found to produce hydrolytic enzymes, chitinase, cellulase, mannanase, and xylanase. A higher glucose concentration of 2% in the PD agar medium inhibited the activities of chitinase but not the cellulase, mananase and xylanase.
    Matched MeSH terms: Cell Division
  17. Balam SK, Soora Harinath J, Krishnammagari SK, Gajjala RR, Polireddy K, Baki VB, et al.
    ACS Omega, 2021 May 04;6(17):11375-11388.
    PMID: 34056293 DOI: 10.1021/acsomega.1c00360
    A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.
    Matched MeSH terms: Cell Division
  18. Chiew GS
    Med J Malaysia, 1979 Dec;34(2):187-92.
    PMID: 232900
    Matched MeSH terms: Cell Division/drug effects
  19. Nesaretnam K, Guthrie N, Chambers AF, Carroll KK
    Lipids, 1995 Dec;30(12):1139-43.
    PMID: 8614304
    The tocotrienol-rich fraction (TRF) of palm oil consists of tocotrienols and some alpha-tocopherol (alpha-T). Tocotrienols are a form of vitamin E having an unsaturated side-chain, rather than the saturated side-chain of the more common tocopherols. Because palm oil has been shown not to promote chemically-induced mammary carcinogenesis, we tested effects of TRF and alpha-T on the proliferation, growth, and plating efficiency (PE) of the MDA-MB-435 estrogen-receptor-negative human breast cancer cells. TRF inhibited the proliferation of these cells with a concentration required to inhibit cell proliferation by 50% of 180 microgram/mL whereas alpha-T had no effect at concentrations up to 1000 microgram/mL as measured by incorporation of [3H]thymidine. The effects of TRF and alpha-T also were tested in longer-term growth experiments, using concentrations of 180 and 500 microgram/mL. We found that TRF inhibited the growth of these cells by 50%, whereas alpha-T did not. Their effect on the ability of these cells to form colonies also was studied, and it was found that TRF inhibited PE, whereas alpha T had no effect. These results suggest that the inhibition is due to the presence of tocotrienols in TRF rather than alpha T.
    Matched MeSH terms: Cell Division/drug effects*
  20. Ibrahim AM, Kayat FB, Hussin ZE, Susanto D, Ariffulah M
    ScientificWorldJournal, 2014;2014:284342.
    PMID: 24757416 DOI: 10.1155/2014/284342
    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.
    Matched MeSH terms: Cell Division/drug effects; Cell Division/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links