Displaying publications 61 - 80 of 162 in total

Abstract:
Sort:
  1. Kamalian N, Mirhosseini H, Mustafa S, Manap MY
    Carbohydr Polym, 2014 Oct 13;111:700-6.
    PMID: 25037405 DOI: 10.1016/j.carbpol.2014.05.014
    The main aim of this study was to investigate the effect of different coating materials (i.e. Na-alginate and chitosan) on the viability and release behavior of Bifidobacterium pseudocatenulatum G4 in the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). This study reports the viability of encapsulated B. pseudocatenulatum G4 coated using different alginate (2-4 g/100mL) and chitosan (0.2-0.8 g/100mL) concentrations. The results indicated that the highest concentration of alginate (4.4142 g/100mL) along with 0.5578 g/100mL chitosan resulted in the highest viability of B. pseudocatenulatum G4. The release behavior of the encapsulated probiotics in SGF (pH 1.5) in 2h followed by 4h in SIF (pH 7.4) was also assessed. The resistance rate of alginate-chitosan capsule in SGF was higher than SIF. The alginate-chitosan encapsulated cells had also more resistance than alginate capsules. The current study revealed that alginate encapsulated B. Pseudocatenulatum G4 exhibited longer survival than its free cells (control).
    Matched MeSH terms: Drug Compounding
  2. Kamari A, Aljafree NF, Yusoff SN
    Int J Biol Macromol, 2016 Jul;88:263-72.
    PMID: 27041651 DOI: 10.1016/j.ijbiomac.2016.03.071
    In this study, an amphiphilic chitosan derivative namely N,N-dimethylhexadecyl carboxymethyl chitosan (DCMC) was synthesised and applied for the first time as a carrier agent for rotenone. The physical and chemical properties of DCMC were characterised by using Fourier Transform Infrared Spectrometer (FTIR), Proton Nuclear Magnetic Resonance Spectrometer ((1)H NMR), CHN-O Elemental Analyser, Thermogravimetric Analyser (TGA) and Differential Scanning Calorimeter (DSC). DCMC was soluble in acidic (except pH 4), neutral and basic media with percent of transmittance (%T) values ranged from 67.2 to 99.4%. The critical micelle concentration (CMC) was determined as 0.095mg/mL. Transmission Electron Microscopy (TEM) analysis confirmed that DCMC has formed self-aggregates and exhibited spherical shape with the size of 65.5-137.0nm. The encapsulation efficiency (EE) and loading capacity (LC) of DCMC micelles with different weight ratios (DCMC:rotenone; 5:1, 50:1 and 100:1) were determined by using High Performance Liquid Chromatography (HPLC). The weight ratio of 100:1 gave the best EE with the value of more than 95.0%. DCMC micelles performed an excellent ability to control the release of rotenone, of which 99.0% of rotenone was released within 48h. Overall, DCMC has several key features to be an effective carrier agent for pesticide formulations.
    Matched MeSH terms: Drug Compounding
  3. Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TA, Zakaria ZA
    Molecules, 2013 Aug 30;18(9):10580-98.
    PMID: 23999729 DOI: 10.3390/molecules180910580
    Drug delivery systems are designed to achieve drug therapeutic index and enhance the efficacy of controlled drug release targeting with specificity and selectivity by successful delivery of therapeutic agents at the desired sites without affecting the non-diseased neighbouring cells or tissues. In this research, we developed and demonstrated a bio-based calcium carbonate nanocrystals carrier that can be loaded with anticancer drug and selectively deliver it to cancer cells with high specificity by achieving the effective osteosarcoma cancer cell death without inducing specific toxicity. The results showed pH sensitivity of the controlled release characteristics of the drug at normal physiological pH 7.4 with approximately 80% released within 1,200 min but when exposed pH 4.8 the corresponding 80% was released in 50 min. This study showed that the DOX-loaded CaCO₃ nanocrystals have promising applications in delivery of anticancer drugs.
    Matched MeSH terms: Drug Compounding
  4. Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, et al.
    J Food Drug Anal, 2017 Jul;25(3):654-666.
    PMID: 28911651 DOI: 10.1016/j.jfda.2016.11.017
    In order to improve the encapsulation process, a newly supercritical antisolvent process was developed to encapsulate fish oil using hydroxypropyl methyl cellulose as a polymer. Three factors, namely, temperature, pressure, and feed emulsion rate were optimized using response surface methodology. The suitability of the model for predicting the optimum response value was evaluated at the conditions of temperature at 60°C, pressure at 150 bar, and feed rate at 1.36 mL/min. At the optimum conditions, particle size of 58.35 μm was obtained. The surface morphology of the micronized fish oil was also evaluated using field emission scanning electron microscopy where it showed that particles formed spherical structures with no internal voids. Moreover, in vitro release of oil showed that there are significant differences of release percentage of oil between the formulations and the results proved that there was a significant decrease in the in vitro release of oil from the powder when the polymer concentration was high.
    Matched MeSH terms: Drug Compounding
  5. Karim S, Baie SH, Hay YK, Bukhari NI
    Pak J Pharm Sci, 2014 May;27(3):425-38.
    PMID: 24811797
    Pelletized dosage forms can be prepared by different methods which, in general, are time consuming and labor intensive. The current study was carried out to investigate the feasibility of preparing the spherical pellets of omeprazole by sieving-spheronization. An optimized formulation was also prepared by extrusion-spheronization process to compare the physical parameters between these two methods. The omeprazole pellets were consisted of microcrystalline cellulose, polyvinylpyrrolidone K 30, sodium lauryl sulphate and polyethylene glycol 6000. The omeprazole delay release system was developed by coating the prepared pellets with aqueous dispersion of Kollicoat 30 DP. The moisture content, spheronization speed and residence time found to influence the final properties of omeprazole pellets prepared by extrusion-spheronization and sieving-spheronization. The Mann-Whitney test revealed that both methods produced closely similar characteristics of the pellets in terms of, friability (p=0.553), flowability (p=0.677), hardness (p=0.103) and density (bulk, p=0.514, tapped, p=0.149) except particle size distribution (p=0.004). The percent drug release from the coated formulation prepared by sieving-spheronization and extrusion spheronization was observed to be 84.12 ± 1.10% and 82.67 ± 0.96%, respectively. Dissolution profiles of both formulations were similar as indicated by values of f1 and f2, 1.52 and 89.38, respectively. The coated formulation prepared by sieving-spheronization and commercial reference product, Zimore ® also showed similar dissolution profiles (f1=1.22, f2=91.52). The pellets could be prepared using sieving-spheronization. The process is simple, easy, less time- and labor-consuming and economical as compared to extrusion-spheronization process.
    Matched MeSH terms: Drug Compounding/methods*
  6. Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, et al.
    J Control Release, 2021 06 10;334:64-95.
    PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014
    Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
    Matched MeSH terms: Drug Compounding
  7. Khursheed R, Singh SK, Gulati M, Wadhwa S, Kapoor B, Pandey NK, et al.
    Int J Biol Macromol, 2021 Jul 31;183:1630-1639.
    PMID: 34015408 DOI: 10.1016/j.ijbiomac.2021.05.064
    Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.
    Matched MeSH terms: Drug Compounding
  8. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, et al.
    Int J Biol Macromol, 2021 Oct 31;189:744-757.
    PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170
    The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
    Matched MeSH terms: Drug Compounding
  9. Kirby BP, Pabari R, Chen CN, Al Baharna M, Walsh J, Ramtoola Z
    J Pharm Pharmacol, 2013 Oct;65(10):1473-81.
    PMID: 24028614 DOI: 10.1111/jphp.12125
    In this study, we examined the relative cellular uptake of nanoparticles (NPs) formulated using poly(lactic-co-glycolic acid) (PLGA) polymers with increasing degree of pegylation (PLGA-PEG) and their potential to deliver loperamide to the brain of a mouse.
    Matched MeSH terms: Drug Compounding
  10. Kuang TK, Kang YB, Segarra I, Kanwal U, Ahsan M, Bukhari NI
    Turk J Pharm Sci, 2021 04 20;18(2):167-175.
    PMID: 33902255 DOI: 10.4274/tjps.galenos.2020.48902
    Objectives: This study was conducted to assess the effect of microwave heating on the preparation of paracetamol cross-linked gelatin matrices by using the design of experiment (DoE) approach and explore the influence of the duration of microwave irradiation, the concentrations of crosslinker, and the amount of sodium bicarbonate (salt) on paracetamol release. These parameters were also compared with those of the matrices prepared via conventional heating.

    Materials and Methods: Twenty gel matrices were prepared with different durations of microwave irradiation, amounts of maize, and concentrations of sodium bicarbonate as suggested by Design Expert (DX®). The percentage drug release, the coefficient of variance (CV) in release, and the mean dissolution time (MDT) were the properties explored in the designed experimentation.

    Results: Target responses were dependent on microwave irradiation time, cross-linker amount, and salt concentration. Classical and microwave heating did not demonstrate statistically significant difference in modifying the percentage of drug released from the matrices. However, the CVs of microwave-assisted formulations were lower than those of the gel matrices prepared via classical heating. Thus, microwave heating produced lesser variations in drug release. The optimized gel matrices demonstrated that the observed percentage of drug release, CV, and MDT were within the prediction interval generated by DX®. The release mechanism of the matrix formulations followed the Peppas-Korsmeyer anomalous transport model.

    Conclusion: The DoE-supported microwave-assisted approach could be applied to optimize the critical factors of drug release with less variation.

    Matched MeSH terms: Drug Compounding
  11. Kumar P, Chaudhary B, Jain V, Baboota S, Shivanandy P, Alharbi KS, et al.
    Curr Drug Deliv, 2023;20(9):1262-1274.
    PMID: 36380413 DOI: 10.2174/1567201820666221114113637
    Molecular pharmaceutics play a critical role in the drug delivery system, representing the direct interconnection of drug bioavailability with its molecular form. There is a diversity in the molecular structures by which it affects its properties, such as amorphous form, crystalline form, partialamorphous molecular dispersion, and disordered state. The active pharmaceutical ingredient (API) and the excipients utilized in the formulation process contain various divergent modes used in the formulation process. They include better formulations of any type to obtain good quality pharmaceutical products. This review reveals how the molecular states affect the API and are important in maintaining the quality of dosage forms. Furthermore, the physio-chemical properties of the components and various pharmaceutical approaches employed in the formulation of dosage forms are studied from the point of view of molecular pharmaceutics.
    Matched MeSH terms: Drug Compounding
  12. Kumar PV, Maki MAA, Wei YS, Tatt LM, Elumalai M, Cheah SC, et al.
    Curr Clin Pharmacol, 2019;14(2):132-140.
    PMID: 30457053 DOI: 10.2174/1574884714666181120103907
    BACKGROUND: Recombinant human keratinocyte growth factor (rHuKGF) has gained considerable attention by researchers as epithelial cells proliferating agent. Moreover, intravenous truncated rHuKGF (palifermin) has been approved by Food and Drug Administration (FDA) to treat and prevent chemotherapy-induced oral mucositis and small intestine ulceration. The labile structure and short circulation time of rHuKGF in-vivo are the main obstacles that reduce the oral bioactivity and dosage of such proteins at the target site.

    OBJECTIVE: Formulation of methacrylic acid-methyl methacrylate copolymer-coated capsules filled with chitosan nanoparticles loaded with rHuKGF for oral delivery.

    METHODS: We report on chitosan nanoparticles (CNPs) with diameter < 200 nm, prepared by ionic gelation, loaded with rHuKGF and filled in methacrylic acid-methyl methacrylate copolymercoated capsules for oral delivery. The pharmacokinetic parameters were determined based on the serum levels of rHuKGF, following a single intravenous (IV) or oral dosages using a rabbit model. Furthermore, fluorescent microscope imaging was conducted to investigate the cellular uptake of the rhodamine-labelled rHuKGF-loaded nanoparticles. The proliferation effect of the formulation on FHs 74 Int cells was studied as well by MTT assay.

    RESULTS: The mucoadhesive and absorption enhancement properties of chitosan and the protective effect of methacrylic acid-methyl methacrylate copolymer against rHuKGF release at the stomach, low pH, were combined to promote and ensure rHuKGF intestinal delivery and increase serum levels of rHuKGF. In addition, in-vitro studies revealed the protein bioactivity since rHuKGFloaded CNPs significantly increased the proliferation of FHs 74 Int cells.

    CONCLUSION: The study revealed that oral administration of rHuKGF-loaded CNPs in methacrylic acid-methyl methacrylate copolymer-coated capsules is practically alternative to the IV administration since the absolute bioavailability of the orally administered rHuKGF-loaded CNPs, using the rabbit as animal model, was 69%. Fluorescent microscope imaging revealed that rhodaminelabelled rHuKGF-loaded CNPs were taken up by FHs 74 Int cells, after 6 hours' incubation time, followed by increase in the proliferation rate.

    Matched MeSH terms: Drug Compounding
  13. Lai JML, Yang SL, Avoi R
    J Glob Infect Dis, 2019 3 1;11(1):2-6.
    PMID: 30814828 DOI: 10.4103/jgid.jgid_50_18
    Introduction: Conventionally, a combination of four separate drugs (ethambutol, isoniazid, rifampicin, and pyrazinamide [EHRZ]) is the first-line pharmacotherapy for pulmonary tuberculosis (TB). In recent years, fixed-dose combination (FDC) formulation, where a single tablet contains the active ingredients of four aforementioned drugs, is gaining popularity due to its ease of administration.

    Objective: To compare the real-world effectiveness of EHRZ and FDC treatment groups on a cohort registry by investigating the sputum conversion rate and treatment outcomes of both groups.

    Methods: A total of 11,489 patients' data were extracted from the Sabah TB registry between January 2012 and June 2016, including EHRZ (n = 4188) and FDC (n = 7301) patients. Then, 1:1 propensity score matching was adopted to reduce the baseline bias. Caliper matching was conducted with maximum tolerance score set at 0.001. Confounders included in the propensity score matching were gender, nationality, diabetes, HIV status, smoking status, and chest X-ray status. Successful matching provided 4188 matched pairs (n = 8376) for final analysis.

    Results: In this matched cohort of 4188 pairs, the 2-month sputum conversion rate of FDC group was significantly higher than the EHRZ group (96.3% vs. 94.3%; P < 0.001) whereas 6-month sputum conversion of both groups showed no significant difference. Treatment outcomes such as noncompliance rate, failure rate, and success rate have no significant difference (P > 0.05) in both the treatment groups. There was an incidental finding of reduced death rate among FDC group compared to the EHRZ group (0.2% vs. 0.5%; P = 0.034).

    Conclusion: The FDC formulation has better sputum conversion rate at 2 months compared to conventional EHRZ regime as separate-drug formulation. It was also observed that FDC has a slight protective effect against all-cause death among TB patients. This protective effect of FDC, however, still needs to be proven further.

    Matched MeSH terms: Drug Compounding
  14. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Drug Compounding
  15. Lee WJ, Tan CP, Sulaiman R, Hee YY, Chong GH
    Food Chem, 2020 Jan 30;304:125427.
    PMID: 31494501 DOI: 10.1016/j.foodchem.2019.125427
    Solution-enhanced dispersion by supercritical carbon dioxide (SEDS) and spray drying (SD) were used to microencapsulate red palm oil (RPO) to prolong the functionality of carotenes and vitamin E. The protective effects provided by SEDS and SD were evaluated in terms of the oxidative stability (65 °C for 35 days), fatty acid compositions, color change and degradation kinetics of carotenes and vitamin E (25 °C, 45 °C, 65 °C, and 85 °C for up to 198 days). SEDS microcapsules (SEDS-M) were the most oxidatively stable (total oxidation (Totox): 26.5), followed by SD microcapsules (SD-M) (34.9) and RPO (56.7). Degradation of carotenes and vitamin E fitted well a first-order kinetic model (average absolute relative deviation = 2-16%). SEDS-M offered better protection to vitamin E (Ea = 36 kJ/mol), whereas SD-M provided better protection for α + β carotene (Ea = 29 kJ/mol). Overall, encapsulation protected RPO during storage, with SEDS-microencapsulated RPO performing better than SD-microencapsulated RPO.
    Matched MeSH terms: Drug Compounding
  16. Leong MH, Tan CP, Nyam KL
    J Food Sci, 2016 Oct;81(10):C2367-C2372.
    PMID: 27635525 DOI: 10.1111/1750-3841.13442
    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage.
    Matched MeSH terms: Drug Compounding*
  17. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
    Matched MeSH terms: Drug Compounding/methods
  18. Liew KB, Tan YT, Peh KK
    Drug Dev Ind Pharm, 2015 Apr;41(4):583-93.
    PMID: 24495273 DOI: 10.3109/03639045.2014.884130
    Manufacturing process and superdisintegrants used in orally disintegrating tablet (ODT) formulation are often time discussed. However, the effect of suitable filler for ODT formulation is not explored thoroughly.
    Matched MeSH terms: Drug Compounding
  19. Lim WM, Rajinikanth PS, Mallikarjun C, Kang YB
    Int J Nanomedicine, 2014;9:2117-26.
    PMID: 24833900 DOI: 10.2147/IJN.S57565
    The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol(®) ATO 5 and Transcutol(®) HP were selected as the lipid phase, and Tween(®) 80 and Solutol(®) HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, -18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.
    Matched MeSH terms: Drug Compounding/methods
  20. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Mar;20(3):265-278.
    PMID: 28296594 DOI: 10.1089/jmf.2016.3836
    Recently, a new syndromic disease combination theory of traditional Chinese medicine (TCM) for hypertensive treatment has been introduced. In the wake of this new concept, a new science-based TCM formula that counteracts various syndromes is needed. The objective of this study was to develop such a formula. Five of the most clinically prescribed TCM herbs that work on different syndromes, namely Gastrodia elata, Uncaria rhynchophylla, Pueraria thomsonii, Panax notoginseng, and Alisma orientale, were selected for this study. The fingerprints of these five herbs were analyzed by tri-step Fourier transform infrared spectroscopy. Three different solvents, 95% ethanol, 50% ethanol, and distilled water, were used for the maceration of the herbs and their vasodilatory effects were studied using in vitro precontracted aortic ring model. Among these, the 50% ethanolic extracts of G. elata (GE50) and A. orientale (AO50), and 95% ethanolic extracts of U. rhynchophylla (UR95), P. thomsonii (PT95), and P. notoginseng (PN95) were found to be the most effective for eliciting vasodilation. Thus, these five extracts were used for orthogonal stimulus-response compatibility group studies by using L25 (5(5)) formula. The best combination ratio for GE50, UR95, PT95, PN95, and AO50, which was assigned as Formula 1 (F1), was found at EC0, EC25, EC20, EC20, and EC10, respectively. The vasodilatory effect of the extracts prepared from different extraction methods using F1 ratio was also studied. From the results, the EC50 and Rmax of total 50% ethanolic extract of five herbs using F1 ratio (F1-2) were 0.028 ± 0.005 mg/mL and 101.71% ± 3.64%, with better values than F1 (0.104 ± 0.014 mg/mL and 97.80% ± 3.12%, respectively). In conclusion, the optimum ratio and appropriate extraction method (F1-2) for the new TCM formula were revealed.
    Matched MeSH terms: Drug Compounding
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links