Displaying publications 61 - 80 of 215 in total

Abstract:
Sort:
  1. Ooi KK, Yeo CI, Mahandaran T, Ang KP, Akim AM, Cheah YK, et al.
    J Inorg Biochem, 2017 01;166:173-181.
    PMID: 27865929 DOI: 10.1016/j.jinorgbio.2016.11.008
    Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), were previously shown to be significantly cytotoxic toward HT-29 cancer cells and to induce cell death by both intrinsic and extrinsic apoptotic pathways whereby 1 activated the p73 gene, and each of 2 and 3 activated p53; 2 also caused apoptotic cell death via the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway. Apoptosis pathways have been further evaluated by mitochondrial cytochrome c measurements and annexin V screening, confirming apoptotic pathways of cell death. Cell cycle analysis showed the majority of treated HT-29 cells were arrested at the G2/M checkpoint after 24h; results of both assays were confirmed by changes in populations of relevant genes (PCR array analysis). Cell invasion studies showed inhibition of metastasis through Matrigel™ matrix to 17-22% cf. untreated cells. LC50values were determined in zebrafish (8.36, 8.17, and 7.64μM for 1-3). Finally, the zebrafish tolerated doses of 1 and 2 up to 0.625μM, and 3 was tolerated at even higher doses of up to 1.25μM.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  2. Nugroho AE, Hirasawa Y, Kawahara N, Goda Y, Awang K, Hadi AH, et al.
    J Nat Prod, 2009 Aug;72(8):1502-6.
    PMID: 19388660 DOI: 10.1021/np900115q
    A new bisindole alkaloid, bisnicalaterine A (1), consisting of two vobasine-type skeletons, and 3-epivobasinol (2) and 3-O-methylepivobasinol (3), with vobasine-type skeletons, were isolated from the leaves of Hunteria zeylanica, and their structures were elucidated on the basis of spectroscopic data and chemical correlation. Bisnicalaterine A showed moderate cytotoxicity against various human cancer cell lines.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  3. Nge CE, Chong KW, Thomas NF, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 05 27;79(5):1388-99.
    PMID: 27077800 DOI: 10.1021/acs.jnatprod.6b00129
    Ten new indole alkaloids (1-10) comprising five ibogan, two aspidosperman, one vincamine, and two bisindole alkaloids, in addition to 32 known alkaloids, were isolated from the stem-bark extract of a Malayan Tabernaemontana corymbosa. The structures of these alkaloids were determined based on analysis of the NMR and MS data and, in five instances (1, 3, 5, 6, 8), confirmed by X-ray diffraction analysis. Two of the iboga alkaloids, conodusines B (2) and C (3), and the iboga-containing bisindole tabernamidine B (10) are notable for the presence of an α-substituted acetyl group at C-20 of the iboga carbon skeleton. The iboga alkaloid (+)-conodusine E (5) had MS and NMR data that were identical to those of (-)-ervatamine I, recently isolated from Ervatamia hainanensis. Establishment of the absolute configuration of (+)-conodusine E (5) was based on analysis of the ECD data, correlation with (-)-heyneanine, and X-ray analysis, which showed that (+)-5 belongs to the same enantiomeric series as exemplified by (-)-coronaridine. The configuration at C-20' of the previously reported Tabernaemontana bisindole alkaloid 19'-oxotabernamine (renamed tabernamidine B) required revision based on the present results. Several of the bisindoles showed pronounced in vitro growth inhibitory activity against drug-sensitive and vincristine-resistant KB cells.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  4. Nge CE, Sim KS, Lim SH, Thomas NF, Low YY, Kam TS
    J Nat Prod, 2016 10 28;79(10):2709-2717.
    PMID: 27759387
    Examination of the EtOH extract of the Malayan Tabernaemontana corymbosa resulted in the isolation of three new alkaloids, viz., cononuridine (1), an unusual hexacyclic, iboga-derived, monoterpenoid indole characterized by contraction of the tetrahydroazepine C-ring and incorporation of an additional isoxazolidine ring, taberisidine (2), a seco-corynanthean alkaloid, and conofolidine (3), an Aspidosperma-Aspidosperma bisindole that showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, and HCT 116 cells. The structures and absolute configurations of 1 and 3 and the absolute configuration of the novel pyridopyrimidine indole alkaloid vernavosine (4) were confirmed by X-ray diffraction analysis. A reasonable biosynthesis route to cononuridine starting from an iboga precursor is presented.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  5. Ng SY, Kamada T, Suleiman M, Vairappan CS
    Nat Prod Res, 2018 Aug;32(15):1832-1837.
    PMID: 29156972 DOI: 10.1080/14786419.2017.1405409
    The Bornean liverwort Gottschelia schizopleura was investigated phytochemically for the first time. Two new and four previously known clerodane-type diterpenoids were isolated from the MeOH extract of G. schizopleura through a series of chromatographic techniques. The structures of the new metabolites were established by analyses of their spectroscopic data (1D NMR, 2D NMR, HRESIMS and IR). All the isolated compounds 1-6 were tested against human promyelocytic leukaemia (HL-60), human colon adenocarcinoma (HT-29) and Mus musculus skin melanoma (B16-F10). Compound 1 and 2 showed active inhibition against HL-60 and B16-F10 cells.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  6. Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, et al.
    J Inorg Biochem, 2021 07;220:111453.
    PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453
    The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  7. Navanesan S, Abdul Wahab N, Manickam S, Cheow YL, Sim KS
    Chem Biol Interact, 2017 Aug 01;273:37-47.
    PMID: 28578903 DOI: 10.1016/j.cbi.2017.05.022
    The active isolate of LF1 in Leptospermum javanicum was further looked into its capabilities in provoking an apoptotic reaction and suppressing the metastasis process in treated non-small lung cancer cells. LF1 underwent isolation and purification to yield a white powder which was identified as Betulinic acid (BA) via NMR, LCMS and IR spectroscopy. The isolate, BA, which produced an encouraging cytotoxic effect against non-small lung cancer cells (A549 and NCI-H1299) through the MTT assay, was further assessed with TUNEL, Sub-G1 population quantification, acridine orange/ethidium bromide staining as well as activated caspase-3 detection. The results pointed towards the induction of apoptosis as a result of increasing doses of BA, regardless of the p53 status in both cell lines. Treatment with BA also prevented an effective attachment of the invasive A549 cells onto a new culture surface in addition to diminishing the migratory potential of treated cells across a porous membrane. Further investigation through the ELISA detection and gelatin zymography showed an adverse effect to production of matrix metalloproteinase-2 (MMP-2) while the levels of matrix metalloproteinase-9 (MMP-9) were not negatively affected. The findings from this study validate the potential of L. javanicum as a potential anti-cancer treatment as stated in our previous study. The isolate, BA not only showed a capacity in inducing apoptotic cell death in non-small lung cancer cells, but managed to distort the ability of the cancer cells in effectively undergoing the metastasis process.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  8. Najim N, Bathich Y, Zain MM, Hamzah AS, Shaameri Z
    Molecules, 2010 Dec 17;15(12):9340-53.
    PMID: 21169884 DOI: 10.3390/molecules15129340
    The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuronphenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  9. Naidu KR, Khalivulla SI, Rasheed S, Fakurazi S, Arulselvan P, Lasekan O, et al.
    Int J Mol Sci, 2013;14(1):1843-53.
    PMID: 23325050 DOI: 10.3390/ijms14011843
    Polymer supported dichlorophosphate (PEG-OPOCl(2)) is an efficient green catalyst for the electrophilic substitution reaction of indole with aromatic aldehydes, in neat condition, to afford an excellent yield of bis(indolyl) methanes with short reaction time, at room temperature. The synthesized compounds and their anti-cancer activity are evaluated.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  10. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  11. Murakami A, Ali AM, Mat-Salleh K, Koshimizu K, Ohigashi H
    Biosci Biotechnol Biochem, 2000 Jan;64(1):9-16.
    PMID: 10705442
    A total of 114 methanol extracts from 42 plant families of edible Malaysian plants were screened for their inhibitory activities toward tumor promoter 12-O-hexadecanoylphorbol-13-acetate (HPA)-induced Epstein-Barr virus (EBV) activation in Raji cells. By testing at a concentration of 200 micrograms/ml, 74% of the 114 extracts inhibited EBV activation by 30% or more. This rate is comparable to those observed in the previous tests on edible Thai (60%) and Indonesian (71%) plants, and, importantly, much higher than that (26%) observed for Japanese edible plants. Approximately half of the Malaysian plants did not taxonomically overlap those from the other three countries, suggesting that Malaysian plants, as well as Thai and Indonesian plants, are an exclusive source of effective chemopreventive agents. Further dilution experiments indicated an extract from the leaves of Piper betle L. (Piperaceae) to be one of the most promising species. The high potential of edible Southeast Asian plants for cancer chemoprevention is collectively discussed.
    Matched MeSH terms: Drug Screening Assays, Antitumor*
  12. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3814-8.
    PMID: 25027934 DOI: 10.1016/j.bmcl.2014.06.068
    The new series of pentacyclic triterpenoids reduced lantadene A (3), B (4), and 22β-hydroxy-3-oxo-olean-12-en-28-oic acid (5) analogs were synthesized and tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead analog (11) showed sub-micromolar activity against TNF-α induced activation of NF-κB and exhibited inhibition of IKKβ in a single-digit micromolar dose. At the same time, 11 showed promising cytotoxicity against A549 lung cancer cells with IC50 of 0.98 μM. The Western blot analysis further showed that the suppression of NF-κB activity by the lead analog 11 was due to the inhibition of IκBα degradation, a natural inhibitor of NF-κB. The physicochemical evaluation demonstrated that the lead analog 11 was stable in the simulated gastric fluid of pH 2, while hydrolyzed at a relatively higher rate in the human blood plasma to release the active parent moieties. Molecular docking analysis showed that 11 was hydrogen bonded with the Arg-31 and Gln-110 residues of the IKKβ.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  13. Mohamed SM, Abou-Ghadir OMF, El-Mokhtar MA, Aboraia AS, Abdel Aal AM
    J Nat Prod, 2023 May 26;86(5):1150-1158.
    PMID: 37098901 DOI: 10.1021/acs.jnatprod.2c00793
    Cancer is often associated with an aberrant increase in tubulin and microtubule activity required for cell migration, invasion, and metastasis. A new series of fatty acid conjugated chalcones have been designed as tubulin polymerization inhibitors and anticancer candidates. These conjugates were designed to harness the beneficial physicochemical properties, ease of synthesis, and tubulin inhibitory activity of two classes of natural components. New lipidated chalcones were synthesized from 4-aminoacetophenone via N-acylation followed by condensation with different aromatic aldehydes. All new compounds showed strong inhibition of tubulin polymerization and antiproliferative activity against breast and lung cancer cell lines (MCF-7 and A549) at low or sub-micromolar concentrations. A significant apoptotic effect was shown using a flow cytometry assay that corresponded to cytotoxicity against cancer cell lines, as indicated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. Decanoic acid conjugates were more potent than longer lipid analogues, with the most active being more potent than the reference tubulin inhibitor, combretastatin-A4 and the anticancer drug, doxorubicin. None of the newly synthesized compounds caused any detectable cytotoxicity against the normal cell line (Wi-38) or hemolysis of red blood cells below 100 μM. It is unlikely that the new conjugates described would affect normal cells or interrupt with cell membranes due to their lipidic nature. A quantitative structure-activity relationship analysis was performed to determine the influence of 315 descriptors of the physicochemical properties of the new conjugates on their tubulin inhibitory activity. The obtained model revealed a strong correlation between the tubulin inhibitory activity of the investigated compounds and their dipole moment and degree of reactivity.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  14. Mohamad K, Martin MT, Najdar H, Gaspard C, Sévenet T, Awang K, et al.
    J Nat Prod, 1999 Jun;62(6):868-72.
    PMID: 10395505
    Nine 3,4-secoapotirucallanes, argentinic acids A-I, were isolated from the bark of Aglaia argentea and transformed to their methyl esters 1-9. The structures were determined by spectral and chemical means. Compounds 1-8 showed moderate cytotoxic activity against KB cells (IC50 1.0-3.5 microg/mL).
    Matched MeSH terms: Drug Screening Assays, Antitumor
  15. Mishra V, Nayak P, Singh M, Tambuwala MM, Aljabali AA, Chellappan DK, et al.
    Anticancer Agents Med Chem, 2021;21(12):1490-1509.
    PMID: 32951580 DOI: 10.2174/1871520620666200918111024
    BACKGROUND: Silver nanoparticles (AgNPs) are among the most investigated nanostructures in recent years, which exhibit more challenging and promising qualities in different biomedical applications. The AgNPs synthesized by the green approach provide potential healthcare benefits over chemical approaches, including improvement of tissue restoration, drug delivery, diagnosis, being environmentally friendly, and a boon to cancer treatment.

    OBJECTIVE: In the current scenario, the development of safe and effective drug delivery systems is the utmost concern of formulation development scientists as well as clinicians.

    METHODS: Google, Web of Science, and PubMed portals have been searched for potentially relevant literature to get the latest developments and updated information related to different aspects of green synthesized AgNPs along with their biomedical applications, especially in the treatment of different types of cancers.

    RESULTS: The present review highlights the latest published research regarding the different green approaches for the synthesis of AgNPs, their characterization techniques as well as various biomedical applications, particularly in cancer treatment. In this context, environment-friendly AgNPs are proving themselves as better candidates in terms of size, drug loading and release efficiency, targeting efficiency, minimal drug-associated side effects, pharmacokinetic profiling, and biocompatibility issues.

    CONCLUSION: With continuous efforts by multidisciplinary team approaches, nanotechnology-based AgNPs will shed new light on diagnostics and therapeutics in various disease treatments. However, the toxicity issues of AgNPs need greater attention as unanticipated toxic effects must be ruled out for their diversified applications.

    Matched MeSH terms: Drug Screening Assays, Antitumor
  16. Meragelman TL, Scudiero DA, Davis RE, Staudt LM, McCloud TG, Cardellina JH, et al.
    J Nat Prod, 2009 Mar 27;72(3):336-9.
    PMID: 19093800 DOI: 10.1021/np800350x
    The nuclear factor-kappaB (NF-kappaB) signaling pathway is constitutively active in many types of cancers and is a potential therapeutic target. Using a cell-based assay for stability of inhibitor of kappa B (IkappaB), a critical regulator of NF-kappaB activity, we found that an organic solvent extract of the plant Cryptocarya rugulosa inhibited constitutive NF-kappaB activity in human lymphoma cell lines. The active components were identified as rugulactone, a new alpha-pyrone (1), and the known cryptocaryone (2). Rugulactone was the more active compound, exhibiting up to 5-fold induction of IkappaB at 25 microg/mL; maximal activity was observed with 10 h exposure of test cells to 1 or 2.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  17. Mekzali NW, Chee CW, Abdullah I, Lee YK, Rashid NN, Lee VS, et al.
    Med Chem, 2023;19(9):897-905.
    PMID: 37046198 DOI: 10.2174/1573406419666230410134213
    BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen.

    OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties.

    METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z).

    RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 μM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit.

    CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.

    Matched MeSH terms: Drug Screening Assays, Antitumor
  18. Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, et al.
    J Nat Prod, 2020 06 26;83(6):1925-1930.
    PMID: 32432877 DOI: 10.1021/acs.jnatprod.0c00164
    Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  19. Martula E, Morak-Młodawska B, Jeleń M, Okechukwu PN, Balachandran A, Tehirunavukarasu P, et al.
    Molecules, 2023 Nov 19;28(22).
    PMID: 38005384 DOI: 10.3390/molecules28227662
    Many new isomeric dipyridothiazine dimers have been presented as molecules with anticancer potential. These compounds were obtained in efficient syntheses of 1,6-, 1,8-, 2,7- and 3,6-diazaphenothiazines with selected alkylaromatic linkers. The structures of these compounds has been proven with two-dimensional spectroscopic techniques (COSY, NOESY, HSQC and HMBC) and high-resolution mass spectrometry (HRMS). In silico analyses of probable molecular targets were performed using the Way2Drug server. All new dimers were tested for anticancer activity against breast cancer line MCF7 and colon cancer line SW480. Cytotoxicity was assessed on normal L6 muscle cells. The tested dimers had high anticancer potential expressed as IC50 and the selectivity index SI. The most active derivative, 4c, showed an IC50 activity of less than 1 µM and an SI selectivity index higher than 100. Moreover, the compounds were characterized by low toxicity towards normal cells, simultaneously indicating a high cytostatic potential.
    Matched MeSH terms: Drug Screening Assays, Antitumor
  20. Malek SN, Phang CW, Ibrahim H, Norhanom AW, Sim KS
    Molecules, 2011 Jan 14;16(1):583-9.
    PMID: 21240148 DOI: 10.3390/molecules16010583
    The methanol and fractionated extracts (hexane, ethyl acetate and water) of Alpinia mutica (Zingiberaceae) rhizomes were investigated for their cytotoxic effect against six human carcinoma cell lines, namely KB, MCF7, A549, Caski, HCT116, HT29 and non-human fibroblast cell line (MRC 5) using an in vitro cytotoxicity assay. The ethyl acetate extract possessed high inhibitory effect against KB, MCF7 and Caski cells (IC₅₀ values of 9.4, 19.7 and 19.8 µg/mL, respectively). Flavokawin B (1), 5,6-dehydrokawain (2), pinostrobin chalcone (3) and alpinetin (4), isolated from the active ethyl acetate extract were also evaluated for their cytotoxic activity. Of these, pinostrobin chalcone (3) and alpinetin (4) were isolated from this plant for the first time. Pinostrobin chalcone (3) displayed very remarkable cytotoxic activity against the tested human cancer cells, such as KB, MCF7 and Caski cells (IC₅₀ values of 6.2, 7.3 and 7.7 µg/mL, respectively). This is the first report of the cytotoxic activity of Alpinia mutica.
    Matched MeSH terms: Drug Screening Assays, Antitumor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links