Displaying publications 61 - 80 of 118 in total

Abstract:
Sort:
  1. Lombigit, Lojius, Maslina Ibrahim, Nolida Yusup, Nur Aira Abdul Rahman, Yong, Chong Fong
    MyJurnal
    Pulse Shaping Amplifier (PSA) is an essential component in nuclear spectroscopy system. This
    amplifier has two functions; to shape the output pulse and performs noise filtering. In this paper,
    we describe the procedure for the design and development of a pulse shaping amplifier which can
    be used in a nuclear spectroscopy system. This prototype was developed using high performance
    electronics devices and assembled on a FR4 type printed circuit board. Performance of this
    prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model
    Silena 7611). The test results showed that the performance of this prototype was comparable
    to the commercial spectroscopic amplifier.
    Matched MeSH terms: Electronics
  2. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, et al.
    Adv Mater, 2018 Jun;30(23):e1800917.
    PMID: 29633379 DOI: 10.1002/adma.201800917
    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10-6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.
    Matched MeSH terms: Electronics
  3. Lim XY, Tan TYC, Muhd Rosli SH, Sa'at MNF, Sirdar Ali S, Syed Mohamed AF
    PLoS One, 2021;16(1):e0245471.
    PMID: 33465140 DOI: 10.1371/journal.pone.0245471
    INTRODUCTION: Hemp (Cannabis sativa subsp. sativa), commonly used for industrial purposes, is now being consumed by the public for various health promoting effects. As popularity of hemp research and claims of beneficial effects rises, a systematic collection of current scientific evidence on hemp's health effects and pharmacological properties is needed to guide future research, clinical, and policy decision making.

    OBJECTIVE: To provide an overview and identify the present landscape of hemp research topics, trends, and gaps.

    METHODS: A systematic search and analysis strategy according to the preferred reporting items for systematic review and meta-analysis-ScR (PRISMA-ScR) checklist on electronic databases including MEDLINE, OVID (OVFT, APC Journal Club, EBM Reviews), Cochrane Library Central and Clinicaltrials.gov was conducted to include and analyse hemp research articles from 2009 to 2019.

    RESULTS: 65 primary articles (18 clinical, 47 pre-clinical) were reviewed. Several randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) improving spontaneous bowel movement in functional constipation. There was also evidence suggesting benefits in cannabis dependence, epilepsy, and anxiety disorders. Pre-clinically, hemp derivatives showed potential anti-oxidative, anti-hypertensive, anti-inflammatory, anti-diabetic, anti-neuroinflammatory, anti-arthritic, anti-acne, and anti-microbial activities. Renal protective effects and estrogenic properties were also exhibited in vitro.

    CONCLUSION: Current evidence on hemp-specific interventions are still preliminary, with limited high quality clinical evidence for any specific therapeutic indication. This is mainly due to the wide variation in test item formulation, as the multiple variants of this plant differ in their phytochemical and bioactive compounds. Future empirical research should focus on standardising the hemp plant for pharmaceutical use, and uniformity in experimental designs to strengthen the premise of using hemp in medicine.

    Matched MeSH terms: Electronics
  4. Lim XB, Ong WJ
    Nanoscale Horiz, 2021 May 21.
    PMID: 34018529 DOI: 10.1039/d1nh00127b
    The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
    Matched MeSH terms: Electronics
  5. Lim GP, Soon CF, Ma NL, Morsin M, Nayan N, Ahmad MK, et al.
    Environ Res, 2021 10;201:111592.
    PMID: 34175291 DOI: 10.1016/j.envres.2021.111592
    MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.
    Matched MeSH terms: Electronics*
  6. Li Tsu Chong, Deena Clare Thomas, Renie Martha Joanes, Rose A Nain
    MyJurnal
    Introduction: Phlebitis may localise to the insertion site or travel along the vein. The risk of phlebitis is higher in children as they have thin and weak blood vessels and move continuously due to the pain associated with insertion. Therefore, regular assessment of the risk of developing phlebitis is crucial. This review aimed to identify infusion phlebitis assessment tool used in the paediatric setting. Methods: Electronic databases used were Scopus, ProQuest, ScienceDirect, and Google Scholar. A total of ten studies which assess the development of infusion phlebitis on hos- pitalised children included in this reviewed. Study findings were discussed and concluded with a recommendation for clinical practice and future studies. Results: Phlebitis development rate was the primary outcome measures in ten studies. Of ten studies, six provided no actual definition of phlebitis. Eight reported phlebitis incidence and/or severity, eight used a scale and two used a definition alone in assessing the development of phlebitis. This review identified five different phlebitis assessment scales. Conclusion: Although there are applicable phlebitis scales can be used for paediatric setting, Limited studies have been conducted on infusion phlebitis assessment method in chil- dren. Therefore, it is suggested that more studies and vigorous test needed to identify applicable assessment tools in paediatric setting.
    Matched MeSH terms: Electronics
  7. Leong YM, Haseeb ASMA
    Materials (Basel), 2016 Jun 28;9(7).
    PMID: 28773645 DOI: 10.3390/ma9070522
    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1-0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu₃Al₂. Cu₃Al₂ resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu₆Sn₅ intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu₆Sn₅ IMC but has no significant effect on the thickness of Cu₃Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.
    Matched MeSH terms: Electronics
  8. LaDou J, Rohm T
    Int J Occup Environ Health, 1998 Jan-Mar;4(1):1-18.
    PMID: 10026464
    High-technology microelectronics has a major presence in countries such as China, India, Indonesia, and Malaysia, now the third-largest manufacturer of semiconductor chips. The migration of European, Japanese, and American companies accommodates regional markets. Low wage rates and limited enforcement of environmental regulations in developing countries also serve as incentives for the dramatic global migration of this industry. The manufacture of microelectonics products is accompanied by a high incidence of occupational illnesses, which may reflect the widespread use of toxic materials. Metals, photoactive chemicals, solvents, acids, and toxic gases are used in a wide variety of combinations and workplace settings. The industry also presents problems of radiation exposure and various occupational stressors, including some unresolved ergonomic issues. The fast-paced changes of the technology underlying this industry, as well as the stringent security precautions, have added to the difficulty of instituting proper health and safety measures. Epidemiologic studies reveal an alarming increase in spontaneous abortions among cleanroom manufacturing workers; no definitive study has yet identified its cause. Other health issues, including occupational cancer, are yet to be studied. The microelectronics industry is a good example of an industry that is exported to many areas of the world before health and safety problems are properly addressed and resolved.
    Matched MeSH terms: Electronics/organization & administration*
  9. Kuziel AW, Milowska KZ, Chau PL, Boncel S, Koziol KK, Yahya N, et al.
    Adv Mater, 2020 Aug;32(34):e2000608.
    PMID: 32672882 DOI: 10.1002/adma.202000608
    The fundamental colloidal properties of pristine graphene flakes remain incompletely understood, with conflicting reports about their chemical character, hindering potential applications that could exploit the extraordinary electronic, thermal, and mechanical properties of graphene. Here, the true amphipathic nature of pristine graphene flakes is demonstrated through wet-chemistry testing, optical microscopy, electron microscopy, and density functional theory, molecular dynamics, and Monte Carlo calculations, and it is shown how this fact paves the way for the formation of ultrastable water/oil emulsions. In contrast to commonly used graphene oxide flakes, pristine graphene flakes possess well-defined hydrophobic and hydrophilic regions: the basal plane and edges, respectively, the interplay of which allows small flakes to be utilized as stabilizers with an amphipathic strength that depends on the edge-to-surface ratio. The interactions between flakes can be also controlled by varying the oil-to-water ratio. In addition, it is predicted that graphene flakes can be efficiently used as a new-generation stabilizer that is active under high pressure, high temperature, and in saline solutions, greatly enhancing the efficiency and functionality of applications based on this material.
    Matched MeSH terms: Electronics
  10. Kumar S, Foroozesh J
    Carbohydr Polym, 2021 Apr 01;257:117619.
    PMID: 33541647 DOI: 10.1016/j.carbpol.2021.117619
    Chitin biopolymer has received significant attention recently by many industries as a green technology. Nanotechnology has been used to make chitin nanocrystals (ChiNCs) that are rod-shaped natural nanomaterials with nanoscale size. Owing to the unique features such as biodegradability, biocompatibility, renewability, rod-shape, and excellent surface and interfacial, physiochemical, and thermo-mechanical properties; ChiNCs have been green and attractive products with wide applications specifically in medical and pharmaceutical, food and packaging, cosmetic, electrical, and electronic, and also in the oil and gas industry. This review aims to give a comprehensive and applied insight into ChiNCs technology. It starts with reviewing different sources of chitin and their extraction methods followed by the characterization of ChiNCs. Furthermore, a detailed investigation into various complex fluids (dispersions, emulsions, foams, and gels) stabilized by ChiNCs and their characterisation have been thoroughly deliberated. Finally, the current status including ground-breaking applications, untapped investigations, and future prospective have been presented.
    Matched MeSH terms: Electronics
  11. Kow CS, Hasan SS
    J Asthma, 2021 Feb 08.
    PMID: 33461348 DOI: 10.1080/02770903.2021.1878531
    Objective: With emerging of observational evidence, we aimed to perform a meta-analysis to summarize the overall effect of the chronic use of inhaled corticosteroids on the clinical outcomes in patients with coronavirus disease 2019 (COVID-19). Methods:Systematic literature search in electronic databases was performed to identify observational studies that investigated the preadmission use of inhaled corticosteroids on the risk of a fatal or severe course of illness in patients with COVID-19 and reported adjusted measures of association. Adjusted odds ratios or relative risks and the corresponding 95% confidence intervals from each study were pooled to produce pooled odds ratio and 95% confidence interval. Results: The meta-analysis revealed no significant difference in the risk for the development of a fatal course of COVID-19 with preadmission use of inhaled corticosteroids in patients with COVID-19 relative to non-use of inhaled corticosteroids (pooled odds ratio=1.28; 95% confidence interval 0.73-2.26). Similarly, the meta-analysis observed no significant difference in the risk for the development of a severe course of COVID-19 with preadmission use of inhaled corticosteroids in patients with COVID-19 relative to non-use of inhaled corticosteroids (pooled odds ratio=1.45; 95% confidence interval 0.96-2.20).Conclusions: Our findings assured the safety of continued use of inhaled corticosteroids during the COVID-19 pandemic.
    Matched MeSH terms: Electronics
  12. Kim HP, Vasilopoulou M, Ullah H, Bibi S, Ximim Gavim AE, Macedo AG, et al.
    Nanoscale, 2020 Apr 14;12(14):7641-7650.
    PMID: 32207472 DOI: 10.1039/c9nr10745b
    Organo-metal halide perovskite field-effect transistors present serious challenges in terms of device stability and hysteresis in the current-voltage characteristics. Migration of ions located at grain boundaries and surface defects in the perovskite film are the main reasons for instability and hysteresis issues. Here, we introduce a perovskite grain molecular cross-linking approach combined with amine-based surface passivation to address these issues. Molecular cross-linking was achieved through hydrogen bond interactions between perovskite halogens and dangling bonds present at grain boundaries and a hydrophobic cross-linker, namely diethyl-(12-phosphonododecyl)phosphonate, added to the precursor solution. With our approach, we obtained smooth and compact perovskite layers composed of tightly bound grains hence significantly suppressing the generation and migration of ions. Moreover, we achieved efficient surface passivation of the perovskite films upon surface treatment with an amine-bearing polymer, namely polyethylenimine ethoxylated. With our synergistic grain and surface passivation approach, we were able to demonstrate the first perovskite transistor with a complete lack of hysteresis and unprecedented stability upon continuous operation under ambient conditions. Added to the merits are its ambipolar transport of opposite carriers with balanced hole and electron mobilities of 4.02 and 3.35 cm2 V-1 s-1, respectively, its high Ion/Ioff ratio >104 and the lowest sub-threshold swing of 267 mV dec-1 reported to date for any perovskite transistor. These remarkable achievements obtained through a cost-effective molecular cross-linking of grains combined with amine-based surface passivation of the perovskite films open a new era and pave the way for the practical application of perovskite transistors in low-cost electronic circuits.
    Matched MeSH terms: Electronics
  13. Khatir NM, Abdul-Malek Z, Banihashemian SM
    Sensors (Basel), 2014;14(10):19229-41.
    PMID: 25320908 DOI: 10.3390/s141019229
    The fabrication of Metal-DNA-Metal (MDM) structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25-55 °C) and magnetic fields (0-1200 mT) on the current-voltage (I-V) features of Au-DNA-Au (GDG) structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.
    Matched MeSH terms: Electronics
  14. Khan SAR, Umar M, Yu Z, Nawaz MT
    Environ Sci Pollut Res Int, 2023 Oct;30(47):103760-103775.
    PMID: 37695483 DOI: 10.1007/s11356-023-29537-y
    The management of waste through dual way of recycling (i-e offline and online) is assumed to have a key role in attaining ecological sustainability and enabling circular practices. The research on online recycling is gaining evolution in recent age. Prior literature on the current research theme has failed to provide a comprehensive outlook and future trend. Therefore, the current research intends to elaborate the current research scenario linked with online recycling by critically scrutinizing the prior research over the last 41 years. A comprehensive analysis was conducted using the Scopus database, retrieving a total of 866 articles. These articles were selected to provide a conceptual overview and understanding of the fundamental research conducted in the field. By employing bibliometric analysis this research provides comprehensive detail about evolution, mapping of publications and prominent trends from the year 1981 to 2022 to understand the practices and future trends of online recycling research. The outcomes elucidated that there is exponential increase in research publications relating to online recycling over the last five years. The most influential producer of online recycling research are China, United Kingdom and United States. Chinese Universities has the highest number of publications among all the countries across globe. Moreover, the current research trend is focused on technology based circular economy, industrial ecology, bio-based waste management, dual channel recycling, municipal waste, waste from electrical and electronic equipment (WEEE), environmental impact and lifecycle assessment. Hence, the prominent research perspective and highlighted features could offer recommendation for upcoming studies to contribute in literature and help practitioners, policymakers and professionals move towards circular practices.
    Matched MeSH terms: Electronics
  15. Jérôme FK, Evariste WT, Bernard EZ, Crespo ML, Cicuttin A, Reaz MBI, et al.
    Sensors (Basel), 2021 Mar 04;21(5).
    PMID: 33806350 DOI: 10.3390/s21051760
    The front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup events in the High-Luminosity Large Hadron Collider (LHC). A low-noise, wide bandwidth, and ultra-low power FEE for the pixel-strip sensor of the CMS has been designed and simulated in a 0.35 µm Complementary Metal Oxide Semiconductor (CMOS) process. The design comprises a Charge Sensitive Amplifier (CSA) and a fast Capacitor-Resistor-Resistor-Capacitor (CR-RC) pulse shaper (PS). A compact structure of the CSA circuit has been analyzed and designed for high throughput purposes. Analytical calculations were performed to achieve at least 998 MHz gain bandwidth, and then overcome pileup issue in the High-Luminosity LHC. The spice simulations prove that the circuit can achieve 88 dB dc-gain while exhibiting up to 1 GHz gain-bandwidth product (GBP). The stability of the design was guaranteed with an 82-degree phase margin while 214 ns optimal shaping time was extracted for low-power purposes. The robustness of the design against radiations was performed and the amplitude resolution of the proposed front-end was controlled at 1.87% FWHM (full width half maximum). The circuit has been designed to handle up to 280 fC input charge pulses with 2 pF maximum sensor capacitance. In good agreement with the analytical calculations, simulations outcomes were validated by post-layout simulations results, which provided a baseline gain of 546.56 mV/MeV and 920.66 mV/MeV, respectively, for the CSA and the shaping module while the ENC (Equivalent Noise Charge) of the device was controlled at 37.6 e- at 0 pF with a noise slope of 16.32 e-/pF. Moreover, the proposed circuit dissipates very low power which is only 8.72 µW from a 3.3 V supply and the compact layout occupied just 0.0205 mm2 die area.
    Matched MeSH terms: Electronics
  16. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
    Matched MeSH terms: Electronics
  17. Junaid HM, Batool M, Harun FW, Akhter MS, Shabbir N
    Crit Rev Anal Chem, 2020 Sep 08.
    PMID: 32897731 DOI: 10.1080/10408347.2020.1806703
    Spectacular color change during a chemical reaction is always fascinating. A variety of chemosensors including Schiff bases have been reported for selective as well as sensitive recognition of ions. This review explains the use of Schiff bases as color changing agents in the detection of anions. This magic of colors is attributed to change in the electronic structure of the system during reaction. Schiff base chemosensors are easy to synthesize, inexpensive and can be used for visual sensing of different ions. Development of Schiff base chemosensors is commonly based on the interactions between polar groups of Schiff bases and ionic species and the process of charge transfer, electron transfer and hydrogen bonding between Schiff bases and ionic species cause the color of the resultant to be changed. Therefore, designing of simple Schiff base chemosensors which are capable of selective sensing of different anions has attracted considerable interest. In particular, naked eye sensing through color change is important and useful since it allows sensing of ions through color changes without using any instrumental technique.HighlightsNaked eye sensors are of much interest these days due to their visual detection properties rather employing complex instrumentation.Optical sensors are sensitive, selective, cost effective and robust.The magic of color change is fascinating factor in detection by these sensors.The color change may be attributed by interaction between anion and Schiff base by different mechanism i.e. electron transfer, charge transfer, hydrogen bonding, ICT etc.LOD data is an evidence of their great efficiency.
    Matched MeSH terms: Electronics
  18. Jafar U, Aziz MJA, Shukur Z
    Sensors (Basel), 2021 Aug 31;21(17).
    PMID: 34502764 DOI: 10.3390/s21175874
    Online voting is a trend that is gaining momentum in modern society. It has great potential to decrease organizational costs and increase voter turnout. It eliminates the need to print ballot papers or open polling stations-voters can vote from wherever there is an Internet connection. Despite these benefits, online voting solutions are viewed with a great deal of caution because they introduce new threats. A single vulnerability can lead to large-scale manipulations of votes. Electronic voting systems must be legitimate, accurate, safe, and convenient when used for elections. Nonetheless, adoption may be limited by potential problems associated with electronic voting systems. Blockchain technology came into the ground to overcome these issues and offers decentralized nodes for electronic voting and is used to produce electronic voting systems mainly because of their end-to-end verification advantages. This technology is a beautiful replacement for traditional electronic voting solutions with distributed, non-repudiation, and security protection characteristics. The following article gives an overview of electronic voting systems based on blockchain technology. The main goal of this analysis was to examine the current status of blockchain-based voting research and online voting systems and any related difficulties to predict future developments. This study provides a conceptual description of the intended blockchain-based electronic voting application and an introduction to the fundamental structure and characteristics of the blockchain in connection to electronic voting. As a consequence of this study, it was discovered that blockchain systems may help solve some of the issues that now plague election systems. On the other hand, the most often mentioned issues in blockchain applications are privacy protection and transaction speed. For a sustainable blockchain-based electronic voting system, the security of remote participation must be viable, and for scalability, transaction speed must be addressed. Due to these concerns, it was determined that the existing frameworks need to be improved to be utilized in voting systems.
    Matched MeSH terms: Electronics
  19. Ismail H, Hanafiah MM
    J Environ Manage, 2020 Jun 15;264:110495.
    PMID: 32250915 DOI: 10.1016/j.jenvman.2020.110495
    Studies on sustainable management of waste from electrical and electronic equipment (or e-waste) have gained increasing attention from researchers around the world in recent years, with investigations into various aspects of e-waste management were investigated. Studies on e-waste generation by previous papers have been reviewed to provide an overview of the current research progress and recommendations for future research. The relevant existing studies were collected from various databases. Using content analysis, three main aspects of the existing studies were evaluated: the distribution and trends of the publications, the scope and boundaries of the studies, and the current research practices and research applications. Although there was a significant increasing trend of the amount of research on the evaluation of e-waste generation, however, the number of publications based on the countries of origin was still small. Another limitation was found related to the differences in the selection of research subjects and the level of analysis resulted in variations in the scopes and boundaries of the existing studies. Various other research areas were investigated further based on their research findings, but the analysis of various methodological aspects was complicated due to the increasing number of newly developed methodologies and the lack of comprehensive and up-to-date reviews on this research area. Additionally, there was also a need to evaluate emerging and/or older technology, which led electrical appliances to be overlooked. We found that comprehensive and up-to-date reviews of the methodological aspects of e-waste generation are still lacking. Based on the research gaps and limitations discussed, recommendations for future research were made.
    Matched MeSH terms: Electronics
  20. Irekeola AA, Shueb RH, E A R ENS, Wada Y, Abdul Rahman Z, Ahmad S, et al.
    Cancers (Basel), 2021 Apr 14;13(8).
    PMID: 33919987 DOI: 10.3390/cancers13081886
    For more than 50 years, nasopharyngeal carcinoma (NPC) has been associated with dermatomyositis (DM), a rare idiopathic inflammatory disorder that mainly affects the skin and muscles. Although the association between these rare diseases is well-documented, the actual prevalence of NPC in DM patients remains unknown. Here, a systematic review and meta-analysis of published data was conducted in accordance with the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar were searched without year or language restrictions for studies reporting the occurrence of NPC in DM patients. The study protocol was lodged with PROSPERO (CRD42021225335). A total of 95 studies covering 303 cases of NPC among 16,010 DM patients was included. Summary estimates were calculated using the random-effects model. The pooled prevalence of NPC in DM was 3.3% (95% CI, 2.5-4.3). When stratified according to study location, higher prevalence estimates were obtained for Hong Kong (36.5%), Malaysia (27.7%), and Singapore (11.9%). There was a predominance of cases among male DM patients compared with females, and most patients were aged 40 and above. Many of the NPC cases were found to be diagnosed after the diagnosis of DM. It is therefore pertinent to screen for NPC in DM patients, especially among older DM patients in the Asian region.
    Matched MeSH terms: Electronics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links