Displaying publications 61 - 80 of 291 in total

Abstract:
Sort:
  1. Alkhadher SAA, Zakaria MP, Yusoff FM, Kannan N, Suratman S, Keshavarzifard M, et al.
    Mar Pollut Bull, 2015 Dec 15;101(1):397-403.
    PMID: 26478457 DOI: 10.1016/j.marpolbul.2015.10.011
    Sewage pollution is one of major concerns of coastal and shoreline settlements in Southeast Asia, especially Brunei. The distribution and sources of LABs as sewage molecular markers were evaluated in surface sediments collected from Brunei Bay. The samples were extracted, fractionated and analyzed using gas chromatography- mass spectrometry (GC-MS). LABs concentrations ranged from 7.1 to 41.3 ng g(-1) dry weight (dw) in surficial sediments from Brunei Bay. The study results showed LABs concentrations variably due to the LABs intensity and anthropogenic influence along Brunei Bay in recent years. The ratio of Internal to External isomers (I/E ratio) of LABs in sediment samples from Brunei Bay ranged from 0.56 to 2.17 along Brunei Bay stations, indicating that the study areas were receiving primary and secondary effluents. This is the first study carried out to assess the distribution and sources of LABs in surface sediments from Brunei Bay, Brunei.
    Matched MeSH terms: Environmental Monitoring/methods
  2. Nasyitah Sobihah N, Ahmad Zaharin A, Khairul Nizam M, Ley Juen L, Kyoung-Woong K
    Chemosphere, 2018 Apr;197:318-324.
    PMID: 29360594 DOI: 10.1016/j.chemosphere.2017.12.187
    Mariculture fish contains a rich source of protein, but some species may bioaccumulate high levels of heavy metals, making them unsafe for consumption. This study aims to identify heavy metal concentration in Lates calcarifer (Barramudi), Lutjanus campechanus (Red snapper) and Lutjanus griseus (Grey snapper). Three species of mariculture fish, namely, L. calcarifer, L. campechanus and L. griseus were collected for analyses of heavy metals. The concentration of heavy metal (As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Se, and Zn) was determined using inductive coupled plasma mass spectrometry (ICP-MS). The distribution of heavy metals mean concentration in muscle is Zn > Fe > As > Se > Cr > Cu > Mn > Pb > Ni > Cd for L. calcarifer, Fe > Zn > Cr > As > Ni > Mn > Se > Cu > Pb > Cd for L. campechanus and Fe > Zn > Cr > Ni > Se > Cu > As > Mn > Pb > Cd for L. griseus. Among all of the species under investigation, the highest concentration of Fe was found in the muscle tissue of L. campechanus (19.985 ± 1.773 mg kg-1) and liver tissue of L. griseus (58.248 ± 8.736 mg kg-1). Meanwhile, L. calcarifer has the lowest concentration of Cd in both muscle (0.007 ± 0.004 mg kg-1) and liver tissue (0.027 ± 0.016 mg kg-1). The heavy metal concentration in muscle tissue is below the permissible limit guidelines stipulated by the Food & Agriculture Organization, 1983 and Malaysia Food Act, 1983. The concentration of heavy metals varies significantly among fish species and tissues. L. campechanus was found to have a higher ability to accumulate heavy metals as compared to the other two species (p 
    Matched MeSH terms: Environmental Monitoring/methods
  3. Kassim A, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Mahmud K, et al.
    Ecotoxicol Environ Saf, 2020 Jun 15;196:110527.
    PMID: 32278138 DOI: 10.1016/j.ecoenv.2020.110527
    Assessment of eco-toxicant using bioluminescent bacterial assay is a widely used and globally accepted method. In this work, a new luminescent bacterium was isolated from squid (Loligo duvauceli) and identified as Photobacterium leiognathi strain AK-MIE using 16S rRNA, phylogeny analysis. The predicted optimum conditions by RSM were 2.76% (w/v) NaCl, 2.28% (w/v) peptone, 0.34% (w/v) yeast extract, and pH 6.83 with 541,211.80 RLU of luminescent production whereas the predicted optimum conditions by ANN were 2.21% (w/v) NaCl, 2.27% (w/v) peptone, 0.39% (w/v) yeast extract, and pH 6.94 which produced 541,986.20 RLU. The validation analysis of both RSM and ANN show 0.60% and 0.69% deviation from the predicted results indicating that both models provided good quality predictions with ANN showing a superior data fitting capability for non-linear regression analysis. Toxicity tests show strain AK-MIE was sensitive to mercury (concentration causing 50% inhibition or IC50 of 0.00978 mgL-1), followed by cadmium (IC50 of 0.5288 mgL-1), copper IC50 of (0.8117 mgL-1), silver (IC50 of 1.109 mgL-1), and lead (IC50 of 10.71 mgL-1) which are more sensitive than previously isolated luminescent bacteria, suggesting that strain AK-MIE has the potential to be used in toxicity assessment of heavy metals in the environment. Based on the field trial results, several sediment samples from industrial areas in Bangi, Selangor managed to inhibit the bioluminescence of strain AK-MIE. Validation method carried out using ICP-MS proved the presence of several toxic heavy metal elements.
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Ismail NAH, Wee SY, Aris AZ
    Mar Pollut Bull, 2018 Feb;127:536-540.
    PMID: 29475693 DOI: 10.1016/j.marpolbul.2017.12.043
    Endocrine disrupting compound (EDC) contamination in food is a global concern. Concerning potential environmental and human health exposed to EDCs via food intake, an experiment was conducted on the selected EDCs concentration in the mariculture fish, Trachinotus blochii (golden pomfret), Lutjanus campechanus (snapper), and Lates calcarifer (sea bass) at Pulau Kukup, Johor. Mariculture activity at Pulau Kukup involves active export of fishes to Singapore and Indonesia. The recovery of BPA (bisphenol A), 4OP (4-octylphenol), and 4NP (4-nonylphenol) were 61.54%-93.00%, 16.79%-17.13%, and 61.24%-71.49%, respectively. Relatively high concentration of BPA was recorded in T. blochii (0.322ng/g), followed by L. calcarifer (0.124ng/g) and L. campechanus (0.023ng/g). Furthermore, 4OP and 4NP were detected only in T. blochii at concentrations of 0.084ng/g and 0.078ng/g, respectively. The results of the present study provide insights on monitoring and managing mariculture activity in relation to environmental protection and food safety.
    Matched MeSH terms: Environmental Monitoring/methods*
  5. Yap CK, Ismail A, Tan SG
    Environ Int, 2003 Jul;29(4):521-8.
    PMID: 12705949
    Concentrations of cadmium (Cd), lead (Pb) and zinc (Zn) in total soft tissues (ST) and byssus (BYS) of the green-lipped mussel Perna viridis from 11 different geographical locations off the west coast of Peninsular Malaysia were determined. The metal concentrations distributed between the BYS and ST were compared. The results of this study indicated that higher levels of Cd (1.31 microg/g), Pb (38.49 microg/g) and Zn (206.52 microg/g) were accumulated in the BYS than in the total ST (Cd: 0.29 microg/g; Pb: 8.27 microg/g; Zn: 102.6 microg/g). Semi-static and short period controlled laboratory experiments were also conducted for the accumulation and depuration of Cd, Pb and Zn in the total ST and BYS of P. viridis. The ratios (BYS/ST) for Pb and Cd from the laboratory experiments showed that the total ST accumulated more metals than the BYS. Therefore, these laboratory results disagreed with those found for the field samples. However, the laboratory results for the Zn ratio (BYS/ST) agreed with those of the field samples. It was evident that when compared to the ST, the BYS was a more sensitive biomonitoring organ for Zn while it could be a complementary organ for Cd and Pb in the total ST. Since total ST of P. viridis had been reported to have regulative mechanism for Zn, its BYS can be used as a biomonitoring organ for the identification of coastal areas exposed to Zn pollution.
    Matched MeSH terms: Environmental Monitoring/methods*
  6. Razali SM, Marin A, Nuruddin AA, Shafri HZ, Hamid HA
    Sensors (Basel), 2014 May 07;14(5):8259-82.
    PMID: 24811079 DOI: 10.3390/s140508259
    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
    Matched MeSH terms: Environmental Monitoring/methods*
  7. Ajab H, Ali Khan AA, Nazir MS, Yaqub A, Abdullah MA
    Environ Res, 2019 09;176:108563.
    PMID: 31280029 DOI: 10.1016/j.envres.2019.108563
    Environmental monitoring is important to determine the extent of eco-system pollution and degradation so that effective remedial strategies can be formulated. In this study, an environmentally friendly and cost-effective sensor made up of novel carbon electrode modified with cellulose and hydroxyapatite was developed for the detection of trace lead ions in aqueous system and palm oil mill effluent. Zinc, cadmium, and copper with lead were simultaneously detected using this method. The electrode exhibited high tolerance towards twelve common metal ions and three model surface active substances - sodium dodecyl sulfate, Triton X-100, and cetyltrimethylammonium bromide. Under optimum conditions, the sensor detected lead ions in palm oil mill effluent in the concentration range of 10-50 μg/L with 0.11 ± 0.37 μg/L limit of detection and 0.37 ± 0.37 μg/L limit of quantification. The validation using tap water, blood serum and palm oil mill effluent samples and compared with Atomic Absorption Spectroscopy, suggested excellent sensitivity of the sensor to detect lead ions in simple and complex matrices. The cellulose produced based on "green" techniques from agro-lignocellulosic wastes, in combination with hydroxyapatite, were proven effective as components in the carbon electrode composite. It has great potential in both clinical and environmental use.
    Matched MeSH terms: Environmental Monitoring/methods*
  8. Fulazzaky MA, Abdul Gany AH
    J Environ Manage, 2009 Jun;90(8):2387-92.
    PMID: 19346056 DOI: 10.1016/j.jenvman.2009.02.017
    Most developing countries, particularly Indonesia, will be facing problems of sludge pressure in the next decades due to the increase in practices of legal and illegal logging as well as land and water demands. Consequently, they will also be facing the challenges of soil erosion and sludge management due to increased quantities of sludge coming from several potential sources, such as activated sludge, chemical sludge, fecal sludge and solid wastes as well as erosion and sedimentation. Although the government of Indonesia has enacted laws and policies to speed up the implementation of the programs and activities related to sludge management, the detailed practice concepts in implementing the programs need to be identified. Discussion of role-sharing amongst the related government agencies, private institutions and other stakeholders is urgent for clarifying the participation of each party in the next years to come. This paper proposes a management approach and level of responsibilities in sludge management. Implementation of zero DeltaQ, zero DeltaS and zero DeltaP policies needs to be adopted by local and central governments. Application of sludge on the agricultural lands and other uses will promote sustainable development.
    Matched MeSH terms: Environmental Monitoring/methods*
  9. Majid NA, Phang IC, Darnis DS
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22827-22838.
    PMID: 28150147 DOI: 10.1007/s11356-017-8484-9
    Identification of Pelargonium radula as bioindicator for mercury (Hg) detection confers a new hope for monitoring the safety of drinking water consumption. Hg, like other non-essential metals, inflicts the deterioration of biological functions in human and other creatures. In the present study, effects of Hg on the physiology and biochemical content of P. radula were undertaken to understand the occurrence of the morphological changes observed. Young leaves of P. radula were treated with different concentrations of Hg-containing solution (0.5, 1.0 and 2.0 ppb) along with controls for 4 h, prior to further analysis. Elevated Hg concentration in treatment solution significantly prompted an increased accumulation of Hg in the leaf tissues. Meanwhile, total protein, chlorophyll and low molecular mass thiol contents (cysteine, glutathione and oxidized glutathione) decreased as Hg accumulation increased. However, phytochelatin 2 productions were induced in the treated leaves, in comparison to the control. Based on these findings, it is postulated that as low as 0.5 ppb of Hg interferes with the metabolic processes of plant cells, which was reflected from the morphological changes exhibited on P. radula leaves-the colour of the Hg-treated leaves changed from green to yellowish-brown, became chlorosis and wilted. Changes in the tested characteristics of plant are closely related to the Hg-induced morphological changes on P. radula leaves, a potential bioindicator for detecting Hg in drinking water.
    Matched MeSH terms: Environmental Monitoring/methods*
  10. Chow MF, Yusop Z
    Water Sci Technol, 2014;69(2):244-52.
    PMID: 24473291 DOI: 10.2166/wst.2013.574
    The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.
    Matched MeSH terms: Environmental Monitoring/methods*
  11. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Environmental Monitoring/methods*
  12. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, Juahir H
    Mar Pollut Bull, 2012 Apr;64(4):688-98.
    PMID: 22330076 DOI: 10.1016/j.marpolbul.2012.01.032
    This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.
    Matched MeSH terms: Environmental Monitoring/methods*
  13. Osman R, Saim N, Juahir H, Abdullah MP
    Environ Monit Assess, 2012 Jan;184(2):1001-14.
    PMID: 21494831 DOI: 10.1007/s10661-011-2016-8
    Increasing urbanization and changes in land use in Langat river basin lead to adverse impacts on the environment compartment. One of the major challenges is in identifying sources of organic contaminants. This study presented the application of selected chemometric techniques: cluster analysis (CA), discriminant analysis (DA), and principal component analysis (PCA) to classify the pollution sources in Langat river basin based on the analysis of water and sediment samples collected from 24 stations, monitored for 14 organic contaminants from polycyclic aromatic hydrocarbons (PAHs), sterols, and pesticides groups. The CA and DA enabled to group 24 monitoring sites into three groups of pollution source (industry and urban socioeconomic, agricultural activity, and urban/domestic sewage) with five major discriminating variables: naphthalene, pyrene, benzo[a]pyrene, coprostanol, and cholesterol. PCA analysis, applied to water data sets, resulted in four latent factors explaining 79.0% of the total variance while sediment samples gave five latent factors with 77.6% explained variance. The varifactors (VFs) obtained from PCA indicated that sterols (coprostanol, cholesterol, stigmasterol, β-sitosterol, and stigmastanol) are strongly correlated to domestic and urban sewage, PAHs (naphthalene, acenaphthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene) from industrial and urban activities and chlorpyrifos correlated to samples nearby agricultural sites. The results demonstrated that chemometric techniques can be used for rapid assessment of water and sediment contaminations.
    Matched MeSH terms: Environmental Monitoring/methods*
  14. Saim N, Osman R, Sari Abg Spian DR, Jaafar MZ, Juahir H, Abdullah MP, et al.
    Water Res, 2009 Dec;43(20):5023-30.
    PMID: 19896157 DOI: 10.1016/j.watres.2009.08.052
    Faecal sterols detection is a promising method for identifying sources of faecal pollution. In this study, faecal contamination in water samples from point source (sewage treatment plants, chicken farms, quail farms and horse stables) was extracted using the solid phase extraction (SPE) technique. Faecal sterols (coprostanol, cholesterol, stigmasterol, beta-sitosterol and stigmastanol) were selected as parameters to differentiate the source of faecal pollution. The results indicated that coprostanol, cholesterol and beta-sitosterol were the most significant parameters that can be used as source tracers for faecal contamination. Chemometric techniques, such as cluster analysis, principal component analysis and discriminant analysis were applied to the data set on faecal contamination in water from various pollution sources in order to validate the faecal sterols' profiles. Cluster analysis generated three clusters: coprostanol was in cluster 1, cholesterol and beta-sitosterol formed cluster 2, while cluster 3 contained stigmasterol and stigmastanol. Discriminant analysis suggested that coprostanol, cholesterol and beta-sitosterol were the most significant parameters to discriminate between the faecal pollution source. The use of chemometric techniques provides useful and promising indicators in tracing the source of faecal contamination.
    Matched MeSH terms: Environmental Monitoring/methods
  15. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF
    Mar Pollut Bull, 2013 Apr 15;69(1-2):55-66.
    PMID: 23452623 DOI: 10.1016/j.marpolbul.2013.01.009
    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
    Matched MeSH terms: Environmental Monitoring/methods*
  16. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Environmental Monitoring/methods*
  17. Hodges JE, Vamshi R, Holmes C, Rowson M, Miah T, Price OR
    Integr Environ Assess Manag, 2014 Apr;10(2):237-46.
    PMID: 23913410 DOI: 10.1002/ieam.1476
    Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products. In this project, we have developed an approach to estimate subnational emission inventory of chemical ingredients used in HPC products for 12 Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam (Asia-12). To develop this inventory, we have coupled a 1 km grid of per capita gross domestic product (GDP) estimates with market research data of HPC product sales. We explore the necessity of accounting for a population's ability to purchase HPC products in determining their subnational distribution in regions where wealth is not uniform. The implications of using high resolution data on inter- and intracountry subnational emission estimates for a range of hypothetical and actual HPC product types were explored. It was demonstrated that for low value products (<500 US$ per capita/annum required to purchase product) the maximum deviation from baseline (emission distributed via population) is less than a factor of 3 and it would not result in significant differences in chemical risk assessments. However, for other product types (>500 US$ per capita/annum required to purchase product) the implications on emissions being assigned to subnational regions can vary by several orders of magnitude. The implications of this on conducting national or regional level risk assessments may be significant. Further work is needed to explore the implications of this variability in HPC emissions to enable the HPC industry and/or governments to advance risk-based chemical management policies in emerging markets.
    Matched MeSH terms: Environmental Monitoring/methods*
  18. Mazhar R, Shazili NA, Harrison FS
    Parasitol Res, 2014 Oct;113(10):3737-43.
    PMID: 25115732 DOI: 10.1007/s00436-014-4039-x
    In February 2013, forty-seven Notched threadfin bream, the Nemipterus peronii, were sampled from the eastern coastal waters of the South China Sea. The concentration of various elements, namely cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), strontium (Sr), manganese (Mn), selenium (Se), Lead (Pb), nickel (Ni), aluminum (Al), arsenic (As), iron (Fe), and Zinc (Zn) were analyzed in the liver, muscle, and kidney organs of the host, as well as in their parasites Hysterothalycium reliquens (nematode) and the Paraphilometroides nemipteri (nematode), using inductively coupled plasma mass spectrometry (ICP-MS). The former group of parasites showed highest accumulation capacity for Cr, Cu, Fe, Mn, Se, Ni, and Zn while the latter group had high accumulation potential of As, Hg, Cd, Al, Pb, and Sr. The divergence in heavy-metal accumulation profiles of both nematodes is linked with the specificity of microhabitats, cuticle morphology, and interspecific competition. The outcome of this study indicates that both parasite models can be used for biomonitoring of metal pollution in marine ecosystems.
    Matched MeSH terms: Environmental Monitoring/methods
  19. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jun;80(6):516-20.
    PMID: 18414763 DOI: 10.1007/s00128-008-9413-x
    A study was conducted to determine the suitability of using selected aquatic dipterian larvae for biomonitoring bioassays. The organisms included a member of the biting midge family that was identified as Culicoides furens and a member of the non-biting midge family, identified as Chironomus plumosus. Median lethal toxicity tests were conducted to observe the variation between metal sensitivities between the two larval forms and how variations in temperature could affect the experimental setup. Nine heavy metals were used in the study. It was observed that the 96 h LC(50) (in mg/L) for the different metals was found to be Zn-16.21 (18.55 +/- 13.87); Cr-0.96 (1.08 +/- 0.84); Ag-4.22 (6.87 +/- 1.57); Ni-0.42 (0.59 +/- 0.25); Hg-0.42 (0.59 +/- 0.25); Pb-16.21 (18.31 +/- 14.11); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (7.19 +/- 1.25); Cd-0.42 (0.59 +/- 0.25) for the Chironomus plumosus and Zn-4.22 (6.56 +/- 1.88); Cr-0.42 (0.54 +/- 0.30); Ag-0.42 (0.54 +/- 0.30); Ni-0.42 (0.54 +/- 0.30); Hg-0.04 (0.07 +/- 0.01); Pb-0.42 (0.54 +/- 0.30); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (6.56 +/- 1.88); Cd-0.42 (0.54 +/- 0.30) in the case of the Culicoides furens. With temperature as a variable the LC(50) values were observed to increase from 2.51 mg/L at 10 degrees C to 4.22 ppm at 30 degrees C and to reduce slightly to 3.72 mg/L at 35 degrees C as seen in the case of Zn. It was also observed that at 40 degrees C thermal toxicity and chemical toxicity overlapped as 100% mortality was observed in the controls. This trend was observed in all metals for both C. plumosus and C. furens. Thus indicating temperature played an important role in determining LC(50) values of toxicants.
    Matched MeSH terms: Environmental Monitoring/methods*
  20. Gikonyo EW, Zaharah AR, Hanafi MM, Anuar RA
    ScientificWorldJournal, 2010 Sep 01;10:1679-93.
    PMID: 20842313 DOI: 10.1100/tsw.2010.174
    The effectiveness of different soil tests in assessing soil phosphorus (P) in soils amended with phosphate rocks (PRs) is uncertain. We evaluated the effects of triple superphosphate (TSP) and PRs on extractable P by conventional soil tests (Mehlich 3 [Meh3] and Bray-1 [B1]) and a nonconventional test (iron oxide-impregnated paper, strip). Extracted amounts of P were in the order: Meh3 >B1 > strip. All the tests were significantly correlated (p = 0.001). Acidic reagents extracted more P from TSP than PRs, while the strip removed equal amounts from the two sources. The P removed by the three tests was related significantly to dry matter yield (DMY), but only in the first harvest, except for B1. Established critical P levels (CPLs) differed for TSP and PRs. In PR-fertilized soils, CPLs were 27, 17, and 12 mg P kg(-1) soil for Meh3, B1, and strip, respectively, and 42, 31, and 12 mg P kg(-1) soil, respectively, in TSP-fertilized soils. Thus, the strip resulted in a common CPL for TSP and PRs (12 mg P kg(-1) soil). This method can be used effectively in soils where integrated nutrient sources have been used, but there is need to establish CPLs for different crops. For cost-effective fertilizer P recommendations based on conventional soil tests, there is a need to conduct separate calibrations for TSP- and PR-fertilized soils.
    Matched MeSH terms: Environmental Monitoring/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links