Displaying publications 61 - 80 of 90 in total

Abstract:
Sort:
  1. Lo RKS, Chong KP
    Data Brief, 2020 Aug;31:106030.
    PMID: 32743032 DOI: 10.1016/j.dib.2020.106030
    The oil palm industry, especially in Indonesia and Malaysia is being threatened by Basal Stem Rot (BSR) disease caused by Ganoderma boninense. There is no conclusive remedy in handling this disease effectively. In this study, metagenomics analysis of soil were analyzed for a better understanding of the microbial diversity in relation to BSR disease. Study was conducted in three plantation sites of Sabah, Malaysia which incorporated different disease management and agronomic practices. The estates are located at Sandakan (Kam Cheong Plantation), Lahad Datu (FGV Ladang Sahabat) and Tawau (Warisan Gagah). Soil samples were collected from disease free, high and low BSR incidence plots. Illumina MiSeq metagenomic analysis using V3-V4 region of 16S rRNA gene was employed to study the microbial diversity. Bacteria (97.4%) and Archaea (0.2%) were found majority in kingdom taxonomy level. The most abundant phyla were Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia. Higher alpha diversity of all species was observed among all tested soil from each estates. Beta analysis was analyzed using non phylogenetic UnifRac matrix and visualized using Principal Coordinates Analysis (PCoA). The tested soil samples in Kam Cheong Plantation were found to have similar bacterial communities. The data provided is useful as an indicator in developing biology controls against Ganoderma boninense.
    Matched MeSH terms: Ganoderma
  2. Govender NT, Mahmood M, Seman IA, Wong MY
    Front Plant Sci, 2017;8:1395.
    PMID: 28861093 DOI: 10.3389/fpls.2017.01395
    Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense, is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD), growth (weight and height), and disease severity (DS). Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5-34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%.
    Matched MeSH terms: Ganoderma
  3. Md Saad M, Ali NS, Meon S
    Trop Life Sci Res, 2020 Apr;31(1):19-43.
    PMID: 32963709 DOI: 10.21315/tlsr2020.31.1.2
    Basal stem rot (BSR) is a devastating disease to Malaysian oil palm. Current techniques employed for BSR disease detection on oil palm are laborious, time consuming, costly, and subjected to accuracy limitations. An ergosterol detection method was developed, whereby it correlated well with the degree of infection in oil palm. This current study was designed to study the relationship between Ganoderma biomass, ergosterol concentration, BSR disease progress and to validate the efficiency of microwave assisted extraction (MAE) method for extraction of ergosterol compound. In addition, testing on the sensitivity of thin layer chromatography (TLC) analysis for detection of ergosterol was also the aim of this study. The optimised procedure involved extracting a small amount of Ganoderma-infected oil palm root tissues suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30 s, resulting in simultaneous extraction and saponification. Based on the results obtained, MAE method may be effective in extracting low to high yields of ergosterol from infected oil palm roots demonstrating disease scale 2, 3 and 4. Positive relationship was observed between ergosterol content and inoculation period starting day 3 in the inoculated oil palm seedlings and hour 6 in germinated seeds. TLC analysis demonstrated a good correlation with high performance liquid chromatography (HPLC) quantification. Therefore, a semi-quantitative TLC analysis may be applied for handling a large amount of samples during onset field survey.
    Matched MeSH terms: Ganoderma
  4. Nagappan J, Chin CF, Angel LPL, Cooper RM, May ST, Low EL
    Biotechnol Lett, 2018 Dec;40(11-12):1541-1550.
    PMID: 30203158 DOI: 10.1007/s10529-018-2603-7
    The first and most crucial step of all molecular techniques is to isolate high quality and intact nucleic acids. However, DNA and RNA isolation from fungal samples are usually difficult due to the cell walls that are relatively unsusceptible to lysis and often resistant to traditional extraction procedures. Although there are many extraction protocols for Ganoderma species, different extraction protocols have been applied to different species to obtain high yields of good quality nucleic acids, especially for genome and transcriptome sequencing. Ganoderma species, mainly G. boninense causes the basal stem rot disease, a devastating disease that plagues the oil palm industry. Here, we describe modified DNA extraction protocols for G. boninense, G. miniatocinctum and G. tornatum, and an RNA extraction protocol for G. boninense. The modified salting out DNA extraction protocol is suitable for G. boninense and G. miniatocinctum while the modified high salt and low pH protocol is suitable for G. tornatum. The modified DNA and RNA extraction protocols were able to produce high quality genomic DNA and total RNA of ~ 140 to 160 µg/g and ~ 80 µg/g of mycelia respectively, for Single Molecule Real Time (PacBio Sequel® System) and Illumina sequencing. These protocols will benefit those studying the oil palm pathogens at nucleotide level.
    Matched MeSH terms: Ganoderma
  5. Nur Rashyeda Ramli, Maizatul Suriza Mohamed, Idris Abu Seman, Madihah Ahmad Zairun, Nasyaruddin Mohamad
    Sains Malaysiana, 2016;45:401-409.
    This study was conducted to screen the endophytic bacteria as a biological control agent (BCA) against Ganoderma boninense. A total of 581 endophytic bacteria were successfully isolated from symptomless oil palm root tissues at Teluk Intan, Perak, Malaysia. Three endophytic bacteria, Pseudomonas aeruginosa GanoEB1, Burkholderia cepacia GanoEB2, and Pseudomonas syringae GanoEB3 were found to have a potential as BCA based on their percentage inhibition of radial growth (PIRG) in dual culture and culture filtrate tests. Two nursery trials were conducted to evaluate the capability of these bacteria to suppress Ganoderma disease in oil palm seedlings that were artificially infected with G. boninense using rubber wood block (RWB) sitting technique. The percentage of disease incidence (DI), severity of foliar symptoms (SFS) and dead seedlings were used as the assessment tools. As a result, DI and SFS have developed much slower in the seedlings that were pre-treated with bacteria compared to untreated seedlings. After 6 months of inoculation, Ganoderma disease incidence was reduced from 62-75% in the seedlings treated with P. aeruginosa GanoEB1, followed by B. cepacia GanoEB2 (31-59%) and P. syringae GanoEB3 (30-31%). Among these three endophytic bacteria, P. aeruginosa GanoEB1 was the most effective in controlling Ganoderma disease and the dead seedlings were in the range of 13.3-26.7%, followed by B. cepacia GanoEB2 (33.3% for both trials) and P. syringae GanoEB3 (33.3-40.0%) compared to untreated seedlings at 60% for both trials. A field study needs to be conducted to verify their effectiveness in controlling Ganoderma in oil palm.
    Matched MeSH terms: Ganoderma
  6. Samsudin, N.I.P., Abdullah, N.
    MyJurnal
    Mushrooms have been consumed by mankind for millennia. In Malaysia, there are many species of edible mushrooms which are either cultivated (Agaricus spp., Auricularia spp., Pleurotus spp.) or harvested in the wild (Ganoderma spp., Polyporus spp., Termitomyces spp.). With the advancement of technology, numerous discoveries have been made that elucidated the nutritional (high in fibres, proteins, vitamins; low in fats, cholesterols, sodium) and medicinal (anti-oxidative, anti-hypertensive, neuritogenesis) properties of edible mushrooms, all of which are highly beneficial for the maintenance of human health and well-being. This review thus compiles and documents the available literatures on edible mushrooms reported from Malaysia complete with scientific, English, and vernacular names for future references; provides a comprehensive and updated overview on the nutritional and medicinal properties edible mushrooms reported from Malaysia; and identifies the research gaps to promote further research and development on edible mushrooms reported from Malaysia. Overall, Malaysia is and remains a natural repository for wild and cultivated edible mushrooms. Deeper investigation on their nutritional and medicinal properties will certainly serve as an impetus for economic as well as scientific progress.
    Matched MeSH terms: Ganoderma
  7. Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA
    PeerJ, 2019;7:e8065.
    PMID: 31879570 DOI: 10.7717/peerj.8065
    Background: G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels.

    Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.

    Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.

    Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.

    Matched MeSH terms: Ganoderma
  8. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288497 DOI: 10.3390/molecules24132498
    Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.
    Matched MeSH terms: Ganoderma/drug effects*
  9. Husin NA, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D, Azmi ANN
    Sci Rep, 2020 04 15;10(1):6464.
    PMID: 32296108 DOI: 10.1038/s41598-020-62275-6
    Ground-based LiDAR also known as Terrestrial Laser Scanning (TLS) technology is an active remote sensing imaging method said to be one of the latest advances and innovations for plant phenotyping. Basal Stem Rot (BSR) is the most destructive disease of oil palm in Malaysia that is caused by white-rot fungus Ganoderma boninense, the symptoms of which include flattening and hanging-down of the canopy, shorter leaves, wilting green fronds and smaller crown size. Therefore, until now there is no critical investigation on the characterisation of canopy architecture related to this disease using TLS method was carried out. This study proposed a novel technique of BSR classification at the oil palm canopy analysis using the point clouds data taken from the TLS. A total of 40 samples of oil palm trees at the age of nine-years-old were selected and 10 trees for each health level were randomly taken from the same plot. The trees were categorised into four health levels - T0, T1, T2 and T3, which represents the healthy, mildly infected, moderately infected and severely infected, respectively. The TLS scanner was mounted at a height of 1 m and each palm was scanned at four scan positions around the tree to get a full 3D image. Five parameters were analysed: S200 (canopy strata at 200 cm from the top), S850 (canopy strata at 850 cm from the top), crown pixel (number of pixels inside the crown), frond angle (degree of angle between fronds) and frond number. The results taken from statistical analysis revealed that frond number was the best single parameter to detect BSR disease as early as T1. In classification models, a linear model with a combination of parameters, ABD - A (frond number), B (frond angle) and D (S200), delivered the highest average accuracy for classification of healthy-unhealthy trees with an accuracy of 86.67 per cent. It also can classify the four severity levels of infection with an accuracy of 80 per cent. This model performed better when compared to the severity classification using frond number. The novelty of this research is therefore on the development of new approach to detect and classify BSR using point clouds data of TLS.
    Matched MeSH terms: Ganoderma/pathogenicity
  10. Subramaniam S, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2020;22(1):65-78.
    PMID: 32463999 DOI: 10.1615/IntJMedMushrooms.2020033250
    Ganoderma neo-japonicum is an annual polypore mushroom that is consumed by Malaysian indigenous tribes to treat various ailments including diabetes. The present study aimed to investigate the nutritive composition and in vitro antihyperglycemic effects of G. neo-japonicum extracts on 3T3-L1 preadipocytes. Nutritional analysis of G. neo-japonicum basidiocarps indicated a predominant presence of carbohydrates, proteins, dietary fiber, and microelements. Hot aqueous extract (AE) and its isolated (1,3)(1,6)-β-D-glucan polysaccharide (GNJP) from basidiocarps of G. neo-japonicum were evaluated for their ability to stimulate insulin independent adipogenesis, glucose uptake, adiponectin secretion, and regulate gene expression in 3T3-L1 adipocytes. GNJP showed a dose dependent stimulation of glucose uptake and adiponectin secretion but attenuated lipid accumulation in 3T3-L1 adipocytes. It upregulated the expressions of adiponectin, Aktl (protein kinase B), PPARγ (peroxisome proliferator activated receptor gamma), PRKAG2 (protein kinase, AMP activated), and Slc2a4 (glucose transporter) genes to stimulate glucose uptake in 3T3-L1 cells, which may have contributed to the insulin-mimicking activities observed in this study. In summary, the nutritive compositions and significant glucose uptake stimulatory activities of GNJP indicated that it may have potential use in the formulation of functional food for the management of hyperglycemia, insulin resistance, and related complications.
    Matched MeSH terms: Ganoderma/chemistry*
  11. Tan WC, Kuppusamy UR, Phan CW, Sabaratnam V
    Int J Med Mushrooms, 2018;20(2):155-163.
    PMID: 29773007 DOI: 10.1615/IntJMedMushrooms.2018025445
    Ganoderma neo-japonicum is an annual polypore that grows on decaying bamboo in the forests of Malaysia. The indigenous Temuan tribe uses this species as a medicinal mushroom to cure fever and epilepsy and to improve body strength. The potential use of G. neo-japonicum in genoprotection and DNA repair was established using a single-cell gel electrophoresis (comet) assay. The effects of the ethanol and hot aqueous extracts from wild and cultivated basidiocarps, solid substrate-fermented (SSF) wheat grains, and mycelia via submerged culture on H2O2-damaged murine RAW264.7 macrophages were investigated. An ethanol extract from wild basidiocarps showed the most significant protective effect on murine RAW264.7 macrophages, followed by ethanol and hot water extracts of cultivated basidiocarps, and this effect was dose dependent. However, only the ethanol extracts from SSF and submerged culture showed significant protective effects compared with the control. As for DNA repair ability, only the ethanol extract from wild and cultivated basidiocarps showed significant results when compared with the negative control. The findings suggest the potential therapeutic use of G. neo-japonicum in genome protection and as a DNA repair stimulator.
    Matched MeSH terms: Ganoderma/chemistry*
  12. Abu-Serie MM, Habashy NH, Attia WE
    BMC Complement Altern Med, 2018 May 10;18(1):154.
    PMID: 29747629 DOI: 10.1186/s12906-018-2218-5
    BACKGROUND: Since oxidative stress and inflammation are two linked factors in the pathogenesis of several human diseases. Thus identification of effective treatment is of great importance. Edible mushroom and microalgae are rich in the effective antioxidant phytochemicals. Hence, their beneficial effects on oxidative stress-associated inflammation are extremely required to be investigated.

    METHODS: This study evaluated the functional constituents, antioxidant and anti-inflammatory activities of Malaysian Ganoderma lucidum aqueous extract (GLE) and Egyptian Chlorella vulgaris ethanolic extract (CVE). Also, the synergistic, addictive or antagonistic activities of the combination between the two extracts (GLE-CVE) were studied. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B, as well as levels of nitric oxide, tumor necrosis factor (TNF)-α, lipid peroxidation, reduced glutathione and antioxidant enzymes were determined using in vitro model of lipopolysaccharide-stimulated white blood cells.

    Matched MeSH terms: Ganoderma/chemistry*
  13. Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM
    Int J Med Mushrooms, 2017;19(8):675-684.
    PMID: 29199567 DOI: 10.1615/IntJMedMushrooms.2017021274
    The growth and lectin production of Ganoderma applanatum, a white rot fungus, was optimized in broth cultures. The fungus was found to have a higher growth rate and higher lectin activity when grown in a medium adjusted to pH 6.5 at 26°C under stationary conditions. Expression of lectin activity started in 5-day-old mycelial culture; maximum activity was expressed after the 15th day of incubation. Among the various carbon and nitrogen sources tested, the carbon source sucrose and the nitrogen source yeast extract support maximum growth and lectin production. Lectin from G. applanatum was purified by ammonium sulfate precipitation and ion exchange chromatography. The purified fraction revealed a single band with a molecular weight of 35.0 kDa. Moreover, carbohydrates such as mannitol, glucose, sucrose, maltose, mannose, galactose, sorbose, and fructose were found to inhibit the hemagglutinating activity of the lectin. The purified lectins from G. applanatum contain cytotoxic and proapoptotic activities against HT-29 colon adenocarcinoma cells.
    Matched MeSH terms: Ganoderma/chemistry*
  14. Tan YC, Yeoh KA, Wong MY, Ho CL
    J Plant Physiol, 2013 Nov 01;170(16):1455-60.
    PMID: 23769496 DOI: 10.1016/j.jplph.2013.05.009
    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection.
    Matched MeSH terms: Ganoderma/physiology
  15. Parvin W, Govender N, Othman R, Jaafar H, Rahman M, Wong MY
    Sci Rep, 2020 Sep 24;10(1):15621.
    PMID: 32973199 DOI: 10.1038/s41598-020-72156-7
    Pseudomonas aeruginosa developed its biocontrol agent property through the production of antifungal derivatives, with the phenazine among them. In this study, the applications of crude phenazine synthesized by Pseudomonas aeruginosa UPMP3 and hexaconazole were comparatively evaluated for their effectiveness to suppress basal stem rot infection in artificially G. boninense-challenged oil palm seedlings. A glasshouse experiment under the randomized completely block design was set with the following treatments: non-inoculated seedlings, G. boninense inoculated seedlings, G. boninense inoculated seedlings with 1 mg/ml phenazine application, G. boninense inoculated seedlings with 2 mg/ml phenazine application and G. boninense inoculated seedlings with 0.048 mg/ml hexaconazole application. Seedlings were screened for disease parameters and plant vigour traits (plant height, plant fresh weight, root fresh, and dry weight, stem diameter, and total chlorophyll) at 1-to-4 month post-inoculation (mpi). The application of 2 mg/ml phenazine significantly reduced disease severity (DS) at 44% in comparison to fungicide application (DS = 67%). Plant vigour improved from 1 to 4 mpi and the rate of disease reduction in seedlings with phenazine application (2 mg/ml) was twofold greater than hexaconazole. At 4, 6 and 8 wpi, an up-regulation of chitinase and β-1,3 glucanase genes in seedlings treated with phenazine suggests the involvement of induced resistance in G. boninense-oil palm pathosystem.
    Matched MeSH terms: Ganoderma/pathogenicity*
  16. Saad HM, Sim KS, Tan YS
    Int J Med Mushrooms, 2018;20(2):141-153.
    PMID: 29773006 DOI: 10.1615/IntJMedMushrooms.2018025463
    Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.
    Matched MeSH terms: Ganoderma/metabolism; Ganoderma/chemistry
  17. Al-Obaidi JR, Mohd-Yusuf Y, Razali N, Jayapalan JJ, Tey CC, Md-Noh N, et al.
    Int J Mol Sci, 2014;15(3):5175-92.
    PMID: 24663087 DOI: 10.3390/ijms15035175
    Basal stem rot is a common disease that affects oil palm, causing loss of yield and finally killing the trees. The disease, caused by fungus Ganoderma boninense, devastates thousands of hectares of oil palm plantings in Southeast Asia every year. In the present study, root proteins of healthy oil palm seedlings, and those infected with G. boninense, were analyzed by 2-dimensional gel electrophoresis (2-DE). When the 2-DE profiles were analyzed for proteins, which exhibit consistent significant change of abundance upon infection with G. boninense, 21 passed our screening criteria. Subsequent analyses by mass spectrometry and database search identified caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, enolase, fructokinase, cysteine synthase, malate dehydrogenase, and ATP synthase as among proteins of which abundances were markedly altered.
    Matched MeSH terms: Ganoderma/physiology*
  18. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V
    PMID: 24119256 DOI: 10.1186/1472-6882-13-261
    Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity.
    Matched MeSH terms: Ganoderma/chemistry
  19. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    Mol Biol Rep, 2013 Jan;40(1):147-58.
    PMID: 23065213 DOI: 10.1007/s11033-012-2043-8
    Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
    Matched MeSH terms: Ganoderma/physiology*
  20. Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS
    BMC Plant Biol, 2021 Jan 22;21(1):59.
    PMID: 33482731 DOI: 10.1186/s12870-020-02812-7
    BACKGROUND: Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection.

    RESULTS: The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells.

    CONCLUSION: Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.

    Matched MeSH terms: Ganoderma/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links