Displaying publications 61 - 80 of 349 in total

Abstract:
Sort:
  1. Ganesan N, Embi N, Hasidah MS
    Trop Biomed, 2020 Jun 01;37(2):303-317.
    PMID: 33612800
    Burkholderia pseudomallei is the etiologic agent of melioidosis, a major cause of community-acquired pneumonia and sepsis in the endemic areas. The overall mortality of patients with severe melioidosis remains high due to severe sepsis attributed to overwhelming inflammatory cytokine response in spite of recommended antibiotic therapy. It is crucial that therapeutic approaches beyond just effective antibiotic treatment such as adjunct therapy be considered to mitigate the dysregulated inflammatory signaling and augment host defenses. In an acute B. pseudomallei infection model, we have previously demonstrated that treatment with anti-malarial drug, chloroquine, modulated inflammatory cytokine levels and increased animal survivability via Akt-mediated inhibition of glycogen synthase kinase-3β (GSK3β). GSK3β is a downstream effector molecule within the phosphatidylinositol 3-kinase (PI3K)/ Akt axis which plays a pivotal role in regulating the production of pro- and anti-inflammatory cytokines. Here we evaluate the effect of chloroquine treatment in combination with a subtherapeutic dose of the antibiotic doxycycline on animal survivability, cytokine levels and phosphorylation states of GSK3β (Ser9) in a murine model of acute melioidosis infection to investigate whether chloroquine could be used as an adjunct therapy along with doxycycline for the treatment of melioidosis. Our findings revealed that 50 mg/kg b.w. chloroquine treatment together with a dose of 20 mg/kg b.w. doxycycline improved survivability (100%) of mice infected with 3 X LD50 of B. pseudomallei and significantly (P<0.05) lowered the bacterial loads in spleen, liver and blood compared to controls. B. pseudomallei-infected mice subjected to adjunct treatment with chloroquine and doxycycline significantly (P<0.05) reduced serum levels of pro-inflammatory cytokines (TNF-α, IFN-γ and IL-6) but increased levels of antiinflammatory cytokines (IL-4 and IL-10). Western blot analysis demonstrated that the intensities of pGSK3β (Ser9) in liver samples from mice treated with chloroquine and doxycycline combination were significantly (P<0.05) higher suggesting that the adjunct treatment resulted in significant inhibition of GSK3β. Taken together the bacteriostatic action of doxycycline coupled with the cytokine-modulating effect of chloroquine gave full protection to B. pseudomallei-infected mice and involved inhibition of GSK3β. Findings from the present study using B. pseudomallei-infected BALB/c mice suggest that chloroquine is a plausible candidate for repurposing as adjunct therapy to treat acute B. pseudomallei infection.
    Matched MeSH terms: Mice, Inbred BALB C
  2. Tao ZY, Liu WP, Dong J, Feng XX, Yao DW, Lv QL, et al.
    Trop Biomed, 2020 Dec 01;37(4):911-918.
    PMID: 33612745 DOI: 10.47665/tb.37.4.911
    The purification of parasite-infected erythrocytes from whole blood containing leucocytes is crucial for many downstream genetic and molecular assays in parasitology. Current methodologies to achieve this are often costly and time consuming. Here, we demonstrate the successful application of a cheap and simple Non-Woven Fabric (NWF) filter for the purification of parasitized red blood cells from whole blood. NWF filtration was applied to the malaria-parasitized blood of three strains of mice, and one strain of rat, and to Babesia gibsoni parasitized dog blood. Before and after filtration, the white blood cell (WBC) removal rates and red blood cell (RBC) recovery rates were measured. After NWF filter treatment of rodent malaria-infected blood, the WBC removal rates and RBC recovery rates were, for Kunming mice: 99.51%±0.30% and 86.12%±8.37%; for BALB/C mice: 99.61%±0.15% and 80.74%±7.11%; for C57 mice: 99.71%±0.12% and 84.87%±3.83%; for Sprague-Dawley rats: 99.93%±0.03% and 83.30%±2.96%. Microscopy showed WBCs were efficiently removed from infected dog blood samples, and there was no obvious morphological change of B. gibsoni parasites. NWF filters efficiently remove leukocytes from malaria parasite-infected mouse and rat blood, and are also suitable for filtration of B. gibsoni-infected dog blood.
    Matched MeSH terms: Mice, Inbred BALB C
  3. Nakamura C, Liu MM, Goo YK, Zhang GH, Jia HL, Kumagai A, et al.
    Trop Biomed, 2020 Dec 01;37(4):1029-1037.
    PMID: 33612755 DOI: 10.47665/tb.37.4.1029
    Previously, we have identified a gene encoding thrombospondin-related anonymous protein of Babesia gibsoni (BgTRAP), and have shown that the antisera raised against recombinant BgTRAP expressed in Escherichia coli inhibited the growth of parasites. In the present study, a recombinant vaccinia virus expressing the BgTRAP (VV/BgTRAP) was constructed. A specific band with a molecular mass of 80 kDa, which is similar to that of native BgTRAP on the merozoites of B. gibsoni, was detected in the supernatant of VV/ BgTRAP-infected RK13 cells. Mice inoculated with VV/BgTRAP produced a specific antiBgTRAP response. The antiserum against VV/BgTRAP showed reactivity against the native BgTRAP on parasites. These results indicated that the recombinant vaccinia virus expressing BgTRAP might be a vaccine candidate against canine B. gibsoni infection.
    Matched MeSH terms: Mice, Inbred BALB C
  4. Yang DQ, Zeng Y, Sun XY, Yue X, Hu CX, Jiang P, et al.
    Trop Biomed, 2020 Dec 01;37(4):932-946.
    PMID: 33612747 DOI: 10.47665/tb.37.4.932
    In previous studies, a Trichinella spiralis serine protease (TsSP) was identified in excretion/secretion (ES) products from intestinal infective L1 larvae (IIL1) using immunoproteomics. The complete cDNA sequence of TsSP gene was 1372 bp, which encoded 429 amino acids with 47.55 kDa. The TsSP was transcribed and expressed at all T. spiralis life cycle phases, as well as mainly located at the cuticle and stichosome of the parasitic nematode. Recombinant TsSP bind to intestinal epithelial cells (IEC) and promoted larva invasion, however, its exact function in invasion, development and reproduction are still unknown. The aim of this study was to confirm the biological function of TsSP during T. spiralis invasion and growth using RNA interference (RNAi) technology. The results showed that on 1 day after electroporation using 2.5 µM siRNA156, TsSP mRNA and protein expression of muscle larvae (ML) was suppressed by 48.35 and 59.98%, respectively. Meanwhile, silencing of TsSP gene by RNAi resulted in a 61.38% decrease of serine protease activity of ML ES proteins, and a significant reduction of the in vitro and in vivo invasive capacity of IIL1 to intrude into the IEC monolayer and intestinal mucosa. When mice were infected with siRNA 156-transfected larvae, adult worm and muscle larva burdens were decreased by 58.85 and 60.48%, respectively. Moreover, intestinal worm growth and female fecundity were evidently inhibited after TsSP gene was knockdown, it was demonstrated that intestinal adults became smaller and the in vitro newborn larval yield of females obviously declined compared with the control siRNA group. The results indicated that knockdown of TsSP gene by RNAi significantly reduced the TsSP expression and enzymatic activity, impaired larvae intrusion and growth, and lowered the female reproductive capacity, further verified that TsSP might participate in diverse processes of T. spiralis life cycle, it will be a new prospective candidate molecular target of anti-Trichinella vaccines.
    Matched MeSH terms: Mice, Inbred BALB C
  5. Vishalkumar P, Jayaprakash NS, Desai PK, Krishnan V, Vijayalakshmi MA
    Trop Biomed, 2020 Dec 01;37(4):1050-1061.
    PMID: 33612757 DOI: 10.47665/tb.37.4.1050
    OBJECTIVE: To evaluate the sensitivity and the stability of the monoclonal antibodies (Aa3c10, b10c1), against truncated Histidine-rich protein 2 (PfHRP2), developed using smart polymer, poly N-isopropylacrylamide, as adjuvant for malarial diagnostic applications in comparison with the available commercial antibodies.

    METHODS: Two hybridoma clones (Aa3c10, b10c1) were used for the production of ascites in BALB/c mice. Purification of monoclonal antibodies from the ascites was carried out using affinity columns. The thermal stability study of monoclonal antibodies was done by storing it at 37°C and 45°C for thirty days. The stored antibodies were analyzed using SDS-PAGE and flow-through device where the antigenantibody interaction was visualized by Protein A colloidal gold solution. Sensitivity was determined by endpoint dilution ELISA and the dissociation constant by competitive ELISA. Sensitive pair optimization was done by sandwich ELISA using biotinylated antibodies. Prototype preparation for lateral flow assay had a colloidal gold-based detection system.

    RESULTS: Thermal stability experiments showed that both mAbs (Aa3c10; b10c1) are stable up to thirty days at 45°C while the commercially available mAbs were stable up to fifteen days only. Compared to commercial antibodies, the mAb Aa3c10, showed the highest sensitivity in end-point titre. In sensitive pair optimization, it was observed that the mAb, b10c1, as a detector and the mAb, Aa3c10, as a capture antibody showed the highest absorbance to detect 50pg/ml PfHRP2 antigen. The prototype formulation of lateral flow assay using the mAbs (Aa3c10; b10c1) showed good reactivity with WHO panel and no false-positive results were observed with twenty clinically negative samples and five P. vivax positive samples.

    CONCLUSIONS: The novel monoclonal antibodies (Aa3c10, b10c1) against truncated PfHRP2, could be a strong potential candidates that can be included in making RDTs with better sensitivity and stability.

    Matched MeSH terms: Mice, Inbred BALB C
  6. Wakid MH, Toulah FH, Mahjoub HA, Alsulami MN, Hikal WM
    Trop Biomed, 2020 Dec 01;37(4):1008-1017.
    PMID: 33612753 DOI: 10.47665/tb.37.4.1008
    Giardiasis is the major water-borne diarrheal disease present worldwide caused by the common intestinal parasite, Giardia duodenalis. This work aims to investigate the effect of G. duodenalis infection pathogenicity in immunosuppressed animals through histopathological examination. A total of 45 BALB/c mice were divided into four groups; G1 (negative control), G2 (healthy animals exposed to Giardia); G3 (immunosuppressed animals exposed to Giardia), and G4 (non-exposed immunosuppressed animals). Our study revealed that G3 was the most affected group with an infection rate of 100%. The animals showed general weakness, soft stool, and high death rate with severe histopathological changes in the duodenum and mild degenerative changes in hepatic tissues. In G2, the maximal lesions in both duodenum and liver were on the 11th day. We spotted damage in the villi, edema in the central core, and submucosa, in addition to increased cellular infiltration with inflammation in lamina propria. The presence of the parasites within the villi and the lumen was clear. Most of the hepatocytes revealed hydropic and fatty changes, also dilated congested central veins and edema were observed. G3 changes were more intense than G2 with massive Giardia trophozoites between the intestinal villi, lumen, and extensive fatty liver degeneration. Immune suppression plays a significant role in the severity of injury with the Giardia parasites in duodenum and liver cells.
    Matched MeSH terms: Mice, Inbred BALB C
  7. Ahmad-Raus R, Ali AM, Tan WS, Salleh HM, Eshaghi M, Yusoff K
    Res Vet Sci, 2009 Feb;86(1):174-82.
    PMID: 18599098 DOI: 10.1016/j.rvsc.2008.05.013
    A panel of six monoclonal antibodies (mAbs) against the nucleocapsid (NP) protein of Newcastle disease virus (NDV) was produced by immunization of Balb/c mice with purified recombinant NP protein. Western Blot analysis showed that all the mAbs recognized linearized NP epitopes. Three different NP antigenic sites were identified using deleted truncated NP mutants purified from Escherichia coli. One of the antigenic sites was located at the C-terminal end (residues 441 to 489) of the NP protein. Two other antigenic sites were located within the N-terminal end (residues 26-121 and 122-375). This study demonstrates that the N- and C-terminal ends of the NP proteins are responsible in eliciting immune response, thus it is most likely that these ends are exposed on the NP.
    Matched MeSH terms: Mice, Inbred BALB C
  8. Izham MNM, Hussin Y, Rahim NFC, Aziz MNM, Yeap SK, Rahman HS, et al.
    BMC Complement Med Ther, 2021 Oct 07;21(1):254.
    PMID: 34620132 DOI: 10.1186/s12906-021-03422-y
    BACKGROUND: Eucalyptol is an active compound of eucalyptus essential oil and was reported to have many medical attributes including cytotoxic effect on breast cancer cells. However, it has low solubility in aqueous solutions which limits its bioavailability and cytotoxic efficiency. In this study, nanostructured lipid carrier loaded with eucalyptol (NLC-Eu) was formulated and characterized and the cytotoxic effect of NLC-Eu towards breast cancer cell lines was determined. In addition, its toxicity in animal model, BALB/c mice was also incorporated into this study to validate the safety of NLC-Eu.

    METHODS: Eucalyptol, a monoterpene oxide active, was used to formulate the NLC-Eu by using high pressure homogenization technique. The physicochemical characterization of NLC-Eu was performed to assess its morphology, particle size, polydispersity index, and zeta potential. The in vitro cytotoxic effects of this encapsulated eucalyptol on human (MDA MB-231) and murine (4 T1) breast cancer cell lines were determined using the MTT assay. Additionally, acridine orange/propidium iodide assay was conducted on the NLC-Eu treated MDA MB-231 cells. The in vivo sub-chronic toxicity of the prepared NLC-Eu was investigated using an in vivo BALB/c mice model.

    RESULTS: As a result, the light, translucent, milky-colored NLC-Eu showed particle size of 71.800 ± 2.144 nm, poly-dispersity index of 0.258 ± 0.003, and zeta potential of - 2.927 ± 0.163 mV. Furthermore, the TEM results of NLC-Eu displayed irregular round to spherical morphology with narrow size distribution and relatively uniformed particles. The drug loading capacity and entrapment efficiency of NLC-Eu were 4.99 and 90.93%, respectively. Furthermore, NLC-Eu exhibited cytotoxic effects on both, human and mice, breast cancer cells with IC50 values of 10.00 ± 4.81 μg/mL and 17.70 ± 0.57 μg/mL, respectively at 72 h. NLC-Eu also induced apoptosis on the MDA MB-231 cells. In the sub-chronic toxicity study, all of the studied mice did not show any signs of toxicity, abnormality or mortality. Besides that, no significant changes were observed in the body weight, internal organ index, hepatic and renal histopathology, serum biochemistry, nitric oxide and malondialdehyde contents.

    CONCLUSIONS: This study suggests that the well-characterized NLC-Eu offers a safe and promising carrier system which has cytotoxic effect on breast cancer cell lines.

    Matched MeSH terms: Mice, Inbred BALB C
  9. Loh FK, Nathan S, Chow SC, Fang CM
    Pathog Glob Health, 2021 09;115(6):392-404.
    PMID: 33525974 DOI: 10.1080/20477724.2021.1881369
    The proficiency of Salmonella Typhi to induce cell-mediated immunity has allowed its exploitation as a live vector against the obligate intracellular protozoan Toxoplasma gondii. T. gondii vaccine research is of great medical value due to the lack of a suitable toxoplasmosis vaccine. In the present work, we integrated T. gondii antigen into a growth-dependent chromosome locus guaBA of S. Typhi CVD910 strain to form recombinant S. Typhi monovalent CVD910-SAG1 expressed T. gondii SAG1 antigen and monovalent CVD910-GRA2 expressed T. gondii GRA2 antigen. Furthermore, a low-copy stabilized recombinant plasmid encoding SAG1 antigen was transformed into CVD910-GRA2 to form bivalent CVD910-GS strain. An osmolarity-regulated promoter was also incorporated to control the gene transcription, whereas clyA export protein was included to translocate the antigen out of the cytoplasm. Both CVD910-GRA2 and CVD910-GS displayed healthy growth fitness and readily expressed the encoded T. gondii antigens. When administered in vivo, CVD910-GS successfully induced both humoral and cellular immunity in the immunized BALB/c mice, and extended mice survival against virulent T. gondii. In particular, the mice immunized with bivalent CVD910-GS presented the highest titers of IgG, percentages of CD4+ T, CD8+ T, B cells and memory T cells, and total IgG+ memory B cells as compared to the CVD910-GRA2 and control strains. The CVD910-GS group also generated mixed Th1/Th2 cytokine profile with secretions of IFN-ɣ, IL-2 and IL-10. This study demonstrated the importance of enhancing live vector fitness to sustain heterologous antigen expression for eliciting robust immune responses and providing effective protection against pathogen.
    Matched MeSH terms: Mice, Inbred BALB C
  10. Jee PF, Tiong V, Shu MH, Khoo JJ, Wong WF, Abdul Rahim R, et al.
    PLoS One, 2017;12(11):e0187718.
    PMID: 29108012 DOI: 10.1371/journal.pone.0187718
    Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.
    Matched MeSH terms: Mice, Inbred BALB C
  11. Al-Doaiss A, Jarrar Q, Moshawih S
    IET Nanobiotechnol, 2020 Jul;14(5):405-411.
    PMID: 32691743 DOI: 10.1049/iet-nbt.2020.0039
    Silver nanoparticles (Ag NPs) are invested in various sectors and are becoming more persistent in our ambient environment with potential risk on our health and the ecosystems. The current study aims to investigate the histological, histochemical and ultrastructural hepatic changes that might be induced by 10 nm silver nanomaterials. Male mice (BALB/C) were exposed for 35 injections of daily dose of 10 nm Ag NPs (2 mg/kg). Liver tissues were subjected to examination by light and electron microscopy for histological, histochemical and ultrastructural alterations. Exposure to Ag NPs induced Kupffer cells hyperplasia, sinusoidal dilatation, apoptosis, ground glass hepatocytes appearance, nuclear changes, inflammatory cells infiltration, hepatocytes degeneration and necrosis. In addition, 10 nm Ag NPs induced histochemical alterations mainly glycogen depletion with no hemosiderin precipitation. Moreover, these nanomaterials exhibited ultrastructure alterations including mitochondrial swelling and cristolysis, cytoplasmic vacuolation, apoptosis, multilammellar myelin figures formation and endoplasmic destruction and reduction. The findings revealed that Ag NPs can induce alterations in the hepatic tissues, the chemical components of the hepatocytes and in the ultrastructure of the liver. One may also conclude that small size Ag NPs, which are increasingly used in human products could cause various toxigenic responses to all hepatic tissue components.
    Matched MeSH terms: Mice, Inbred BALB C
  12. Kim JD, Lee AR, Moon DH, Chung YU, Hong SY, Cho HJ, et al.
    Emerg Microbes Infect, 2024 Dec;13(1):2343910.
    PMID: 38618740 DOI: 10.1080/22221751.2024.2343910
    Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.
    Matched MeSH terms: Mice, Inbred BALB C
  13. Hasan N, Sham NFR, Karim MKA, Fuad SBSA, Hasani NAH, Omar E, et al.
    Sci Rep, 2021 Jul 15;11(1):14559.
    PMID: 34267293 DOI: 10.1038/s41598-021-93964-5
    We presented a development of a custom lead shield and mouse strainer for targeted irradiation from the gamma-cell chamber. This study was divided into two parts i.e., to (i) fabricate the shield and strainer from a lead (Pb) and (ii) optimize the irradiation to the mice-bearing tumour model with 2 and 8 Gy absorbed doses. The lead shielding was fabricated into a cuboid shape with a canal on the top and a hole on the vertical side for the beam path. Respective deliveries doses of 28 and 75 Gy from gamma-cell were used to achieve 2 and 8 Gy absorbed doses at the tumour sites.
    Matched MeSH terms: Mice, Inbred BALB C
  14. Choo ZW, Chakravarthi S, Wong SF, Nagaraja HS, Thanikachalam PM, Mak JW, et al.
    Oncol Lett, 2010 Jan;1(1):215-222.
    PMID: 22966285
    Systemic candidiasis is a fungal infection which coupled with solid malignancies places patients at high risk of succumbing to the disease. Few studies have shown evidence of the relationship between systemic candidiasis and malignancy-induced immunosuppression disease especially in breast cancer. At present, animal studies that exclusively demonstrate this relationship have yet to be conducted. The exact causative mechanism of systemic candidiasis is currently under much speculation. This study therefore aimed to demonstrate this relationship by observing the histopathological changes of organs harvested from female Balb/c mice which were experimentally induced with breast cancer and inoculated with systemic candidiasis. The mice were randomly assigned to five different groups (n=12). The first group (group 1) was injected with phosphate buffer solution, the second (group 2) with systemic candidiasis, the third (group 3) with breast cancer and the final two groups (groups 4 and 5) had both candidiasis and breast cancer at two different doses of candidiasis, respectively. Inoculation of mice with systemic candidiasis was performed by an intravenous injection of Candida albicans via the tail vein following successful culture methods. Induction of mice with breast cancer occurred via injection of 4T1 cancer cells at the right axillary mammary fatpad after effective culture methods. The prepared slides with organ tissues were stained with hematoxylin and eosin, periodic acidic schiff and gomori methenamine silver stains for a histopathological analysis. Grading of primary tumour and identification of metastatic deposits, as well as scoring of inflammation and congestion in all the respective organs was conducted. Statistical tests performed to compare groups 2 and 4 showed that group 4 exhibited a highly statistically significant increase in organ inflammation and congestion (p<0.01). The median severity of candidiasis in the kidneys and liver also increased in group 4 as compared to group 2. In conclusion, based on the above evidence, systemic candidiasis significantly increased in mice with breast cancer.
    Matched MeSH terms: Mice, Inbred BALB C
  15. Hod R, Maniam S, Mohd Nor NH
    Molecules, 2021 Feb 19;26(4).
    PMID: 33669783 DOI: 10.3390/molecules26041105
    Equol is a soy isoflavone metabolite that can be produced by intestinal bacteria. It is lipophilic and resembles natural oestrogens with an affinity to oestrogen receptors. This review is focused on how equol affects breast cancer, as evidenced by in vivo and in vitro studies. Equol is considered chemoprotective in specific endocrine-related pathologies, such as breast cancer, prostate cancer, cardiovascular diseases, and menopausal symptoms. In humans, not everyone can produce equol from gut metabolism. It is postulated that equol producers benefit more than non-equol producers for all the endocrine-related effects. Equol exists in two enantiomers of R-equol and S-equol. Earlier studies, however, did not specify which enantiomer was being used. This review considers equol's type and concentration variations, pathways affected, and its outcome in in vivo and in vitro studies.
    Matched MeSH terms: Mice, Inbred BALB C
  16. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    BMC Genomics, 2011 Aug 25;12:432.
    PMID: 21864415 DOI: 10.1186/1471-2164-12-432
    BACKGROUND: Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models.

    RESULTS: Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653).

    CONCLUSIONS: OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.

    Matched MeSH terms: Mice, Inbred BALB C
  17. Karunanidhi A, Ghaznavi-Rad E, Jeevajothi Nathan J, Abba Y, van Belkum A, Neela V
    PMID: 28321262 DOI: 10.1155/2017/1914732
    The in vivo antibacterial and burn wound healing potency of Persian shallot bulbs (Allium stipitatum) were explored in a mice burn model infected with methicillin-resistant Staphylococcus aureus (MRSA). Hexane (ASHE) and dichloromethane (ASDE) extracts were tested. Female BALB/c mice were inflicted with third-degree thermal injury followed by infection with MRSA. ASHE and ASDE formulated with simple ointment base (SOB) at concentrations of 1%, 2%, and 5% (w/w) were topically applied to burn wounds twice a day for 20 days. Silver sulfadiazine (1%) served as drug positive control. Microbiological analysis was carried out on 1, 2, 3, 4, and 5 days postwounding (dpw) and histopathological analysis at the end of the experiment (20 dpw). Both ointments demonstrated strong antibacterial activity with complete elimination of MRSA at 48-72 h after infection. The rate of wound contraction was higher (95-100%) in mice groups treated with ASHE and ASDE ointments after 15 dpw. Histological analysis revealed significant increase (p < 0.05) in epithelialization and collagenation in treated groups. The ASHE and ASDE were found to be relatively noncytotoxic and safe to Vero cell line (383.4 μg mL(-1); 390.6 μg mL(-1)), suggesting the extracts as safe topical antibacterial as well as promising alternatives in managing thermal injuries.
    Matched MeSH terms: Mice, Inbred BALB C
  18. Yeap SK, Omar AR, Ali AM, Ho WY, Beh BK, Alitheen NB
    PMID: 21941589 DOI: 10.1155/2012/786487
    The in vivo immunomodulatory effect of ethanolic extracts from leaves of Rhaphidophora korthalsii was determined via immune cell proliferation, T/NK cell phenotyping, and splenocyte cytotoxicity of BALB/c mice after 5 consecutive days of i.p. administration at various concentrations. Splenocyte proliferation index, cytotoxicity, peripheral blood T/NK cell population, and plasma cytokine (IL-2 and IFN-γ) in mice were assessed on day 5 and day 15. High concentration of extract (350 μg/mice/day for 5 consecutive days) was able to stimulate immune cell proliferation, peripheral blood NK cell population, IL-2, and IFN- γ cytokines, as well as splenocyte cytotoxicity against Yac-1 cell line. Unlike rIL-2 which degraded rapidly, the stimulatory effect from the extract managed to last until day 15. These results suggested the potential of this extract as an alternative immunostimulator, and they encourage further study on guided fractionation and purification to identify the active ingredients that contribute to this in vitro and in vivo immunomodulatory activity.
    Matched MeSH terms: Mice, Inbred BALB C
  19. Suresh K, Mak JW, Yong HS
    PMID: 1818400
    Matched MeSH terms: Mice, Inbred BALB C
  20. Lim PY, Cardosa MJ
    J Virol Methods, 2019 08;270:113-119.
    PMID: 31100287 DOI: 10.1016/j.jviromet.2019.05.005
    The goal of this paper was to develop a sandwich ELISA that can detect intact human enterovirus A71 (EV-A71) virus-like particles (VLPs) in vaccines. This assay specifically detected EV-A71 viruses from different sub-genogroups as well as EV-A71 VLPs, and treatment of VLPs with high heat and low pH reduced or completely abolished detection of the VLPs suggesting that the ELISA detected assembled particles. Using a purified VLP as a reference standard, a quantitative sandwich ELISA (Q-ELISA) was established which was used to monitor the yield and purity of the VLPs during manufacturing. Coupled with immunogenicity studies, the Q-ELISA was used to evaluate the performance of the VLPs and formalin-inactivated EV-A71 vaccine. This assay has the potential to play an important role in the development of an efficient process to produce and purify the VLPs and in examining the quality of EV-A71 vaccines.
    Matched MeSH terms: Mice, Inbred BALB C
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links