Displaying publications 61 - 80 of 311 in total

Abstract:
Sort:
  1. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, et al.
    Int J Mol Sci, 2012;13(6):6639-50.
    PMID: 22837654 DOI: 10.3390/ijms13066639
    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
    Matched MeSH terms: Nanostructures/chemistry
  2. Shabaneh A, Girei S, Arasu P, Mahdi M, Rashid S, Paiman S, et al.
    Sensors (Basel), 2015;15(5):10452-64.
    PMID: 25946634 DOI: 10.3390/s150510452
    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.
    Matched MeSH terms: Nanostructures
  3. Setyawati MI, Kutty RV, Leong DT
    Small, 2016 Oct;12(40):5601-5611.
    PMID: 27571230 DOI: 10.1002/smll.201601669
    Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
    Matched MeSH terms: Nanostructures/chemistry*
  4. Saqib S, Rafiq S, Muhammad N, Khan AL, Mukhtar A, Ullah S, et al.
    J Hazard Mater, 2021 06 05;411:125155.
    PMID: 33858108 DOI: 10.1016/j.jhazmat.2021.125155
    The synergetic effect of nitrogen-rich and CO2-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO2 competently. The introduction of well-defined nanostructured porous fillers of pores close to the kinetic diameter of the gas molecule and polymer matrix compatibility is a challenge in improving the gas transportation characteristics of MMMs. This study deals with the preparation of porphyrin filler and the polysulfone (PSf) polymer MMMs. The fillers demonstrated uniform distribution, uniformity, and successful bond formation. MMMs demonstrated high thermal stability with a glass transition temperature in the range of 480-610 °C. The porphyrin filler exhibited microporous nature with the presence of π-π bonds and Lewis's basic functionalities between filler-polymer resulted in a highly CO2-philic structure. The pure and mixed gas permeabilities and selectivity were successfully improved and surpass the Robeson's upper bound curve's tradeoff. Additionally, the temperature influence on CO2 permeability revealed lower activation energies at higher temperatures leading to the gas transport facilitation. This can be granted consistency and long-term durability in polymer chains. These results highlight the unique properties of porphyrin fillers in CO2 separation mixed matrix membranes and offer new knowledge to increase comprehension of PSf performance under various contents or environments.
    Matched MeSH terms: Nanostructures
  5. Samrot AV, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, Abubakar A, et al.
    Int J Nanomedicine, 2020;15:7097-7115.
    PMID: 33061370 DOI: 10.2147/IJN.S259653
    Background: Plant gums consist of polysaccharides which can be used in the preparation of nanocarriers and provide a wide application in pharmaceutical applications including as drug delivery agents and the matrices for drug release. The objectives of the study were to collect plant gums from Araucaria heterophylla L and Prosopis chilensis L and to extract and characterize their polysaccharides. Then to utilize these plant gum-derived polysaccharides for the formulation of nanocarriers to use for drug loading and to examine their purpose in drug delivery in vitro.

    Methods: Plant gum was collected, polysaccharide was extracted, purified, characterized using UV-Vis, FTIR, TGA and GCMS and subjected to various bioactive studies. The purified polysaccharide was used for making curcumin-loaded nanocarriers using STMP (sodium trimetaphosphate). Bioactivities were performed on the crude, purified and drug-loaded nanocarriers. These polysaccharide-based nanocarriers were characterized using UV-Vis spectrophotometer, FTIR, SEM, and AFM. Drug release kinetics were performed for the drug-loaded nanocarriers.

    Results: The presence of glucose, xylose and sucrose was studied from the UV-Vis and GCMS analysis. Purified polysaccharides of both the plants showed antioxidant activity and also antibacterial activity against Bacillus sp. Purified polysaccharides were used for nanocarrier synthesis, where the size and shape of the nanocarriers were studied using SEM analysis and AFM analysis. The size of the drug-loaded nanocarriers was found to be around 200 nm. The curcumin-loaded nanocarriers were releasing curcumin slow and steady.

    Conclusion: The extracted pure polysaccharide of A. heterophylla and P. chilensis acted as good antioxidants and showed antibacterial activity against Bacillus sp. These polysaccharides were fabricated into curcumin-loaded nanocarriers whose size was below 200 nm. Both the drug-loaded nanocarriers synthesized using A. heterophylla and P. chilensis showed antibacterial activity with a steady drug release profile. Hence, these natural exudates can serve as biodegradable nanocarriers in drug delivery.

    Matched MeSH terms: Nanostructures/administration & dosage; Nanostructures/chemistry*
  6. Samiun WS, Ashari SE, Salim N, Ahmad S
    Int J Nanomedicine, 2020;15:1585-1594.
    PMID: 32210553 DOI: 10.2147/IJN.S198914
    BACKGROUND: Aripiprazole, which is a quinolinone derivative, has been widely used to treat schizophrenia, major depressive disorder, and bipolar disorder.

    PURPOSE: A Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM) was used purposely to optimize process parameters conditions for formulating nanoemulsion containing aripiprazole using high emulsification methods.

    METHODS: This design is used to investigate the influences of four independent variables (overhead stirring time (A), shear rate (B), shear time (C), and the cycle of high-pressure homogenizer (D)) on the response variable namely, a droplet size (Y) of nanoemulsion containing aripiprazole.

    RESULTS: The optimum conditions suggested by the predicted model were: 120 min of overhead stirring time, 15 min of high shear homogenizer time, 4400 rpm of high shear homogenizer rate and 11 cycles of high-pressure homogenizer, giving a desirable droplet size of nanoemulsion containing aripiprazole of 64.52 nm for experimental value and 62.59 nm for predicted value. The analysis of variance (ANOVA) showed the quadratic polynomial fitted the experimental values with F-value (9.53), a low p-value (0.0003) and a non-significant lack of-fit. It proved that the models were adequate to predict the relevance response. The optimized formulation with a viscosity value of 3.72 mPa.s and pH value of 7.4 showed good osmolality value (297 mOsm/kg) and remained stable for three months in three different temperatures (4°C, 25°C, and 45°C).

    CONCLUSION: This proven that response surface methodology is an efficient tool to produce desirable droplet size of nanoemulsion containing aripiprazole for parenteral delivery application.

    Matched MeSH terms: Nanostructures/chemistry*
  7. Samantaray MR, Mondal AK, Murugadoss G, Pitchaimuthu S, Das S, Bahru R, et al.
    Materials (Basel), 2020 Jun 19;13(12).
    PMID: 32575516 DOI: 10.3390/ma13122779
    This article provides an overview of the structural and physicochemical properties of stable carbon-based nanomaterials and their applications as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The research community has long sought to harvest highly efficient third-generation DSSCs by developing carbon-based CEs, which are among the most important components of DSSCs. Since the initial introduction of DSSCs, Pt-based electrodes have been commonly used as CEs owing to their high-electrocatalytic activities, thus, accelerating the redox couple at the electrode/electrolyte interface to complete the circuit. However, Pt-based electrodes have several limitations due to their cost, abundance, complicated facility, and low corrosion resistance in a liquid electrolyte, which further restricts the large-area applications of DSSCs. Although carbon-based nanostructures showed the best potential to replace Pt-CE of DSSC, several new properties and characteristics of carbon-CE have been reported for future enhancements in this field. In this review, we discuss the detailed synthesis, properties, and performances of various carbonaceous materials proposed for DSSC-CE. These nano-carbon materials include carbon nanoparticles, activated carbon, carbon nanofibers, carbon nanotube, two-dimensional graphene, and hybrid carbon material composites. Among the CE materials currently available, carbon-carbon hybridized electrodes show the best performance efficiency (up to 10.05%) with a high fill factor (83%). Indeed, up to 8.23% improvements in cell efficiency may be achieved by a carbon-metal hybrid material under sun condition. This review then provides guidance on how to choose appropriate carbon nanomaterials to improve the performance of CEs used in DSSCs.
    Matched MeSH terms: Nanostructures
  8. Salman M, Jahan S, Kanwal S, Mansoor F
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21065-21084.
    PMID: 31124071 DOI: 10.1007/s11356-019-05428-z
    The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.
    Matched MeSH terms: Nanostructures/chemistry*
  9. Saleem H, Zaidi SJ, Ismail AF, Goh PS
    Chemosphere, 2022 Jan;287(Pt 2):132083.
    PMID: 34488054 DOI: 10.1016/j.chemosphere.2021.132083
    One of the most favorable environmental applications of nanotechnology has been in air pollution remediation in which different nanomaterials are used as nanoadsorbents, nanocatalysts, nanofilters, and nanosensors. The nanomaterials have the ability to adsorb several contaminants existing in the air. Also, certain semiconducting nanomaterials materials can be used for photocatalytic remediation. Air contamination control can also be achieved by nanostructured membranes with pores sufficiently small to separate various pollutants from the exhaust. Nanomaterial enabled sensors are also used for the detection of harmful gases such as hydrogen sulfide, sulphur dioxide, and nitrogen dioxide. Conversely, because of the uncertainties in addition to irregularities in size, shape as well as chemical compositions, the existence of some nanomaterials might cause harmful effects on the environment along with the health of people. Thus, concerns were expressed about the transport and conversion of nanoparticles discharged into the surroundings. This review critically examined and assessed the present literature on the application of nanomaterials in the air, together with its negative impacts. The main focus is placed on the application of carbon-based and metal-based nanomaterials for air pollution remediation. It is noted that these nanomaterials demonstrating fascinating properties for improving the environmental pollution remediation system.
    Matched MeSH terms: Nanostructures*
  10. Sakeena MH, Yam MF, Elrashid SM, Munavvar AS, Azmin MN
    J Oleo Sci, 2010;59(12):667-71.
    PMID: 21099145
    Ketoprofen is a potent non-steroidal anti-inflammatory drug has been used in the treatment of various kinds of pains, inflammation and arthritis. However, oral administration of ketoprofen produces serious gastrointestinal adverse effects. One of the promising methods to overcome these adverse effects is to administer the drug through the skin. The aim of the present work is to evaluate the anti-inflammatory and analgesic effects from topically applied ketoprofen entrapped palm oil esters (POEs) based nanoemulsion and to compare with market ketoprofen product, Fastum(®) gel. The novelty of this study is, use of POEs for the oil phase of nanoemulsion. The anti-inflammatory and analgesic studies were performed on rats by carrageenan-induced rat hind paw edema test and carrageenan-induced hyperalgesia pain threshold test to compare the ketoprofen entrapped POEs based nanoemulsion formulation and market formulation. Results indicated that there are no significant different between ketoprofen entrapped POEs nanoemulsion and market formulation in carrageenan-induced rat hind paw edema study and carrageenan-induced hyperalgesia pain threshold study. However, it shows a significant different between POEs nanoemulsion formulation and control group in these studies at p<0.05. From these results it was concluded that the developed nanoemulsion have great potential for topical application of ketoprofen.
    Matched MeSH terms: Nanostructures/chemistry*
  11. Sagadevan S, Venilla S, Marlinda AR, Johan MR, Wahab YA, Zakaria R, et al.
    J Nanosci Nanotechnol, 2020 Apr 01;20(4):2488-2494.
    PMID: 31492266 DOI: 10.1166/jnn.2020.17185
    Herein, we report the effect of synthesis temperature on the morphologies, optical and electronic properties of magnesium oxide (MgO) nanostructures. The MgO nanostructures were synthesized at different temperatures, i.e., 100 °C, 300 °C, and 600 °C by simple chemical reaction process and their morphology, particle size, optical, and electrical properties were examined by different techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and UV-Vis. spectroscopy. The morphological investigations revealed that various morphologies of MgO nanostructures, i.e., nanoparticles, nanosheet networks, and nanoneedles were synthesized at 100 °C, 300 °C, and 600 °C. The XRD results confirmed that with increasing the synthesis temperature, the crystallinity of the synthesized nanostructures increases. Further, the dielectric properties and AC conductivity at various frequencies for MgO nanostructures were studied which revealed that the dielectric losses decrease with increase in frequency and temperature. In addition, the observed band gap decreases from 4.89 eV to 4.438 eV (100 °C to 600 °C) representing its increase in the conductivity.
    Matched MeSH terms: Nanostructures
  12. Sagadevan S, Vennila S, Suraiya Begum SN, Wahab YA, Hamizi NAB, Marlinda AR, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5452-5457.
    PMID: 32331117 DOI: 10.1166/jnn.2020.17855
    Nanostructure materials are of interest in last few decades due to their unique size-dependent physio-chemical properties. In this paper, zinc oxide (ZnO) and barium doped ZnO nanodisks (NDs) were synthesized using sonochemical method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), UV-vis absorption and dielectric measurements. The XRD and FTIR studies confirm the crystalline nature of ZnO NDs, and the average crystallite size was found to be ~25 nm for pure ZnO and ~22 nm for Ba doped ZnO NDs. SEM study confirmed the spherical shaped ZnO NDs with average sizes in the range of 20-30 nm. The maximum absorbance was obtained in the 200-500 nm regions with a prominent peak absorbance were observed by UV-vis spectra. The corresponding band gap for ZnO NDs and Ba doped ZnO NDs were calculated using Tauc's plot and was found to be 3.12 and 3.04, respectively. The conductivity and dielectric measurements as a function of frequency have been studied.
    Matched MeSH terms: Nanostructures
  13. Rusi, Majid SR
    PLoS One, 2016;11(5):e0154566.
    PMID: 27182595 DOI: 10.1371/journal.pone.0154566
    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Nanostructures/ultrastructure; Nanostructures/chemistry*
  14. Rouhi J, Mamat MH, Ooi CH, Mahmud S, Mahmood MR
    PLoS One, 2015;10(4):e0123433.
    PMID: 25875377 DOI: 10.1371/journal.pone.0123433
    High-density and well-aligned ZnO-ZnS core-shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO-ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer.
    Matched MeSH terms: Nanostructures/ultrastructure; Nanostructures/chemistry
  15. Rizwan M, Hamdi M, Basirun WJ
    J Biomed Mater Res A, 2017 Nov;105(11):3197-3223.
    PMID: 28686004 DOI: 10.1002/jbm.a.36156
    Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017.
    Matched MeSH terms: Nanostructures/chemistry
  16. Ridha NJ, Umar AA, Alosfur F, Jumali MH, Salleh MM
    J Nanosci Nanotechnol, 2013 Apr;13(4):2667-74.
    PMID: 23763142
    Porous ZnO nanostructures have become the subject of research interest--due to their special structures with high surface to volume ratio that may produce peculiar properties for use in optoelectronics, sensing and catalysis applications. A microwave-assisted hydrothermal method has been used for effecting the formation of porous nanostructure of metaloxide materials, such as CoO and SnO2, in solution. Here, by adopting the unique performance of a microwave-assisted-hydrothermal method, we realized the formation of highly porous ZnO nanostructures directly on the substrate surface, instead of in solution. The effects of the ambient reaction conditions and the microwave power on the structural growth of the ZnO nanostructures were studied in detail. Two different ambient reaction conditions, namely refluxed and isolated in autoclave systems, were used in this work. Porous ZnO (PZO) nanostructures with networked-nanoflakes morphology is the typical result for this approach. It was found that the morphology of the ZnO nanostructures was strongly depended on the ambient conditions of the reaction; the isolated-autoclave system may produce reasonably high porous ZnO that is constituted by vertically oriented grainy-flakes structures, whereas the refluxed system produced solid vertically-oriented flake structures. The microwave power did not influence the structural growth of the ZnO. It was also found that both the ambient reaction conditions and the microwave power used influenced the crystallographic orientation of the PZO. For instance, PZO with dominant (002) Bragg plane could be obtained by using refluxed system, whereas PZO with dominant (101) plane could be realized if using isolated system. For the case of microwave power, the crystallographic orientation of PZO prepared using both systems changed from dominant (002) to (101) planes if the power was increased. The mechanism for the formation of porous ZnO nanostructures using the present approach is proposed. The ZnO nanostructures prepared using the present method should find an extensive use in currently existing application due to its property of reasonably high porosity.
    Matched MeSH terms: Nanostructures
  17. Rezaee M, Basri M, Rahman RN, Salleh AB, Chaibakhsh N, Karjiban RA
    Int J Nanomedicine, 2014;9:539-48.
    PMID: 24531324 DOI: 10.2147/IJN.S49616
    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.
    Matched MeSH terms: Nanostructures/administration & dosage*; Nanostructures/chemistry*
  18. Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, et al.
    Expert Opin Drug Deliv, 2020 12;17(12):1737-1765.
    PMID: 32878492 DOI: 10.1080/17425247.2020.1819237
    Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
    Matched MeSH terms: Nanostructures*
  19. Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M, et al.
    Bioengineered, 2022 Jan;13(1):759-773.
    PMID: 34856849 DOI: 10.1080/21655979.2021.2012907
    Nanomedicines are applied as alternative treatments for anticancer agents. For the treatment of cancer, due to the small size in nanometers (nm), specific site targeting can be achieved with the use of nanomedicines, increasing their bioavailability and conferring fewer toxic side effects. Additionally, the use of minute amounts of drugs can lead to cost savings. In addition, nanotechnology is effectively applied in the preparation of such drugs as they are in nm sizes, considered one of the earliest cutoff values for the production of products utilized in nanotechnology. Early concepts described gold nanoshells as one of the successful therapies for cancer and associated diseases where the benefits of nanomedicine include effective active or passive targeting. Common medicines are degraded at a higher rate, whereas the degradation of macromolecules is time-consuming. All of the discussed properties are responsible for executing the physiological behaviors occurring at the following scale, depending on the geometry. Finally, large nanomaterials based on organic, lipid, inorganic, protein, and synthetic polymers have also been utilized to develop novel cancer cures.
    Matched MeSH terms: Nanostructures*
  20. Rasool A, Zulfajri M, Gulzar A, Hanafiah MM, Unnisa SA, Mahboob M
    Biotechnol Rep (Amst), 2020 Jun;26:e00453.
    PMID: 32368512 DOI: 10.1016/j.btre.2020.e00453
    Cobalt nanoparticles (Co-NPs) have been extensively used in clinical practices and medical diagnosis. In this study, the potential toxicity effects of Co-NPs with special emphasis over the biochemical enzyme activities, such as aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) in serum, liver, and kidney of Wistar rats were investigated. This toxicity measurement of nanomaterials can support the toxicological data. The biochemical enzymatic variations are powerful tools for the assessment of toxicity. ASAT and ALAT enzymes have been widely used to predict tissue-specific toxicities associated with xenobiotic. The biochemical changes induced by Co-NPs have significance in their toxicological studies because the alterations in biochemical parameters before clinical symptoms indicate either their toxicant safety or detrimental effect. Herein, Co-NPs with particle size <50 nm significantly activated ASAT and ALAT enzymes in the serum, liver, and kidney of rats at concentration-dependent order.
    Matched MeSH terms: Nanostructures
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links