Displaying publications 61 - 80 of 96 in total

Abstract:
Sort:
  1. Sellvam D, Lau NS, Arip YM
    Trop Life Sci Res, 2018 Mar;29(1):37-50.
    PMID: 29644014 DOI: 10.21315/tlsr2018.29.1.3
    Malaysia is one of the countries that are loaded with mega biodiversity which includes microbial communities. Phages constitute the major component in the microbial communities and yet the numbers of discovered phages are just a minute fraction of its population in the biosphere. Taking into account of a huge numbers of waiting to be discovered phages, a new bacteriophage designated as Escherichia phage YD-2008.s was successfully isolated using Escherichia coli ATCC 11303 as the host. Phage YD-2008.s poses icosahedral head measured at 57nm in diameter with a long non-contractile flexible tail measured at 107nm; proving the phage as one of the members of Siphoviridae family under the order of Caudovirales. Genomic sequence analyses revealed phage YD-2008.s genome as linear dsDNA of 44,613 base pairs with 54.6% G+C content. Sixty-two open reading frames (ORFs) were identified on phage YD-2008.s full genome, using bioinformatics annotation software; Rapid Annotation using Subsystem Technology (RAST). Among the ORFs, twenty-eight of them code for functional proteins. Thirty two are classified as hypothetical proteins and there are two unidentified proteins. Even though majority of the coded putative proteins have high amino acids similarities to phages from the genus Hk578likevirus of the Siphoviridae family, yet phage YD-2008.s stands with its' own distinctiveness. Therefore, this is another new finding to Siphoviridae family as well as to the growing list of viruses in International Committee on Taxonomy of Viruses (ICTV) database.
    Matched MeSH terms: Open Reading Frames
  2. Chuah LO, Shamila Syuhada AK, Mohamad Suhaimi I, Farah Hanim T, Rusul G
    Food Res Int, 2018 03;105:743-751.
    PMID: 29433269 DOI: 10.1016/j.foodres.2017.11.066
    We investigated the genetic relatedness, antibiotic resistance and biofilm-producing ability of 114 strains of Salmonella, belonged to three serotypes (Corvallis, Brancaster and Albany), isolated from naturally contaminated poultry and their environment in wet markets and smale-scale processing plant from northern Malaysia. Pulsed-field gel electrophoresis revealed that Salmonella strains isolated from various wet markets were clonally related, suggesting the widespread dissemination of these three serotypes in northern Malaysia. All except one strain of Salmonella were resistant to more than two classes of antibiotics, hence regarded as multidrug resistant (MDR). Resistance to sulphonamide (96.5%), ampicillin (89.5%), tetracycline (85.1%), chloramphenicol (75.4%), trimethoprim (68.4%), trimethoprim-sulfamethoxazole (67.5%), streptomycin (58.8%) and nalidixic acid (44.4%) were observed. Resistance determinants, floR, cmlA, tetA, tetB, tetG, temB, blaPSE-1, sul1, sul2, qnrA, qnrS, strA and aadA were detected by PCR among MDR Salmonella strains. Seventy-six strains (66.7%) harboured class-I integrons. The gene cassettes identified were dfrA1, dfrA12, aadA2 and an open reading frame orfC with unknown function. All Salmonella strains produced biofilm and 69.3% of them were strong biofilm-producers. Our findings suggested that most likely, persistent Salmonella colonises various sites in the processing environment by producing biofilm, which leads to their widespread dissemination in wet markets located in northern Malaysia.
    Matched MeSH terms: Open Reading Frames
  3. Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DW, Cardosa J, et al.
    Bioinform Biol Insights, 2014 Jan 8;8:1-16.
    PMID: 24453480 DOI: 10.4137/BBI.S13076
    A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.
    Matched MeSH terms: Open Reading Frames
  4. Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN
    Molecules, 2018 06 06;23(6).
    PMID: 29882808 DOI: 10.3390/molecules23061370
    Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
    Matched MeSH terms: Open Reading Frames
  5. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):929-33.
    PMID: 22361112 DOI: 10.1016/j.fsi.2012.02.011
    This study reports the first full length gene of interferon related developmental regulator-1 (designated as MrIRDR-1), identified from the transcriptome of Macrobrachium rosenbergii. The complete gene sequence of the MrIRDR-1 is 2459 base pair long with an open reading frame of 1308 base pairs and encoding a predicted protein of 436 amino acids with a calculated molecular mass of 48 kDa. The MrIRDR-1 protein contains a long interferon related developmental regulator super family domain between 30 and 330. The mRNA expressions of MrIRDR-1 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) infected M. rosenbergii were examined using qRT-PCR. The MrIRDR-1 is highly expressed in hepatopancreas along with all other tissues (walking leg, gills, muscle, haemocyte, pleopods, brain, stomach, intestine and eye stalk). After IHHNV infection, the expression is highly upregulated in hepatopancreas. This result indicates an important role of MrIRDR-1 in prawn defense system.
    Matched MeSH terms: Open Reading Frames
  6. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
    Matched MeSH terms: Open Reading Frames
  7. Eshaghi M, Ali AM, Jamal F, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):23-8.
    PMID: 12186779
    Streptococcus pyogenes ST4547 is an opacity factor negative strain, which has been recently reported as a new emm type from Malaysia. Nucleotide sequencing of the mga regulon of this strain showed the existence of two emm-like genes. The emm gene located upstream of the scpA gene comprises 1305 nucleotides encoding the putative precursor M protein of 435 amino acids in length with an M(r) of 49 kDa. or a predicted mature protein of 394 amino acids with an M(r) of 44.8 kDa. Another gene mrpST4547 was located upstream of the emm gene and downstream of the mga gene. The sequence of this mrp gene comprises 1167 nucleotides encoding a predicted protein of 388 amino acids in length with an M(r) of 42.2 kDa. or a predicted mature protein of 347 amino acids with an M(r) of 37.9 kDa. The mga regulon of strain ST4547 has a mosaic structure comprising segments, which originated from different OF positive and OF negative strains. The sequences flanking the hyper-variable and C repeats of the emmST4547 gene showed high similarity to corresponding regions in the mga regulon of OF positive strains notably M15, M4, M22 and M50. In contrast, the sequence within the hyper-variable and C repeat regions of the emmST4547 gene revealed high similarity to equivalent regions in the OF negative strains. These data indicates that horizontal transfer of emm-like gene could have occurred between OF positive and OF negative strains resulting in architectural divergence in the mga regulon.
    Matched MeSH terms: Open Reading Frames
  8. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Infect Dev Ctries, 2016 Oct 31;10(10):1053-1058.
    PMID: 27801366 DOI: 10.3855/jidc.6944
    INTRODUCTION: Uropathogenic virulence factors have been identified by comparing the prevalence of these among urinary tract isolates and environmental strains. The uropathogenic-specific protein (USP) gene is present on the pathogenicity island (PAI) of uropathogenic Escherichia coli (UPEC) and, depending on its two diverse gene types and the sequential patterns of three open reading frame units (orfUs) following it, there is a method to characterize UPEC epidemiologically called PAIusp subtyping.
    METHODOLOGY: A total of 162 UPEC isolates from Sabah, Malaysia, were tested for the presence of the usp gene and the sequential patterns of three orfUs following it using polymerase chain reaction (PCR). In addition, by means of triplex PCR, the prevalence of the usp gene was compared with other two VFs of UPEC, namely alpha hemolysin (α-hly) and cytotoxic necrotizing factor (cnf-1) genes encoding two toxins.
    RESULTS: The results showed that the usp gene was found in 78.40% of UPEC isolates, indicating that its prevalence was comparable to that found in a previous study in Japan. The two or three orfUs were also associated with the usp gene in this study. All the PAIusp subtypes observed in Japan were present in this study, while subtype IIa was the most common in both studies. The usp gene was observed in a higher percentage of isolates when compared with α-hly and cnf-1 genes.
    CONCLUSIONS: The findings in Japan and Sabah, East Malaysia, were similar, indicating that PAIusp subtyping is applicable to the characterization of UPEC strains epidemiologically elsewhere in the world.
    Matched MeSH terms: Open Reading Frames
  9. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

    Matched MeSH terms: Open Reading Frames/genetics
  10. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    Genetica, 2016 Oct;144(5):513-521.
    PMID: 27502829
    Zeugodacus caudatus is a pest of pumpkin flowers. It has a Palearctic and Oriental distribution. We report here the complete mitochondrial genome of the Malaysian and Indonesian samples of Z. caudatus determined by next-generation sequencing of genomic DNA and determine their taxonomic status as sibling species and phylogeny with other taxa of the genus Zeugodacus. The whole mitogenome of both samples possessed 37 genes (13 protein-coding genes-PCGs, 2 rRNA and 22 tRNA genes) and a control region. The mitogenome of the Indonesian sample (15,885 bp) was longer than that of the Malaysian sample (15,866 bp). In both samples, TΨC-loop was absent in trnF and DHU-loop was absent in trnS1. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with the two samples of Z. caudatus forming a sister group and the genus Zeugodacus was monophyletic. The Malaysian and Indonesian samples of Z. caudatus have a genetic distance of p = 7.8 % based on 13 PCGs and p = 7.0 % based on 15 mitochondrial genes, indicating status of sibling species. They are proposed to be accorded specific status as members of a species complex.
    Matched MeSH terms: Open Reading Frames
  11. Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR
    PLoS One, 2018;13(6):e0199534.
    PMID: 29920552 DOI: 10.1371/journal.pone.0199534
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that can result in severe pulmonary disease and fatal encephalitis in humans and is responsible for outbreaks in Bangladesh, Malaysia, Singapore, India and possibly the Philippines. NiV has a negative-sense RNA genome that contains six genes and serves as a template for production of viral mRNA transcripts. NiV mRNA transcripts are subsequently translated into viral proteins. Traditionally, NiV quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assays have relied on using primer sets that amplify a target (N that encodes the nucleocapsid) within the coding region of the viral gene that also amplifies viral mRNA. Here we describe a novel one-step qRT-PCR assay targeting the intergenic region separating the viral F and G proteins, thereby eliminating amplification of the viral mRNA. This assay is more accurate than the traditional qRT-PCR in quantifying concentrations of viral genomic RNA.
    Matched MeSH terms: Open Reading Frames
  12. Raha AR, Hooi WY, Mariana NS, Radu S, Varma NR, Yusoff K
    Plasmid, 2006 Jul;56(1):53-61.
    PMID: 16675013
    A small plasmid designated pAR141 was isolated from Lactococcus lactis subsp. lactis M14 and its complete 1,594 base pair nucleotide sequence was determined. Analysis of the sequence indicated that this plasmid does not carry any industrially important determinants besides the elements involved in plasmid replication and control. The transcriptional repressor CopG and replication initiation protein RepB appeared as a single operon. A small countertranscribed RNA (ctRNA) coding region was found between the copG and repB genes. The double strand origin (dso) and single strand origin (sso) of rolling circle replicating (RCR) plasmids were also identified in pAR141, suggesting that this plasmid replicates by rolling circle (RC) mode. This observation was supported by S1 nuclease and Southern hybridization analyses.
    Matched MeSH terms: Open Reading Frames
  13. A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, et al.
    PeerJ, 2018;6:e5377.
    PMID: 30280012 DOI: 10.7717/peerj.5377
    Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
    Matched MeSH terms: Open Reading Frames
  14. Low TY, Mohtar MA, Ang MY, Jamal R
    Proteomics, 2019 05;19(10):e1800235.
    PMID: 30431238 DOI: 10.1002/pmic.201800235
    Understanding the relationship between genotypes and phenotypes is essential to disentangle biological mechanisms and to unravel the molecular basis of diseases. Genes and proteins are closely linked in biological systems. However, genomics and proteomics have developed separately into two distinct disciplines whereby crosstalk among scientists from the two domains is limited and this constrains the integration of both fields into a single data modality of useful information. The emerging field of proteogenomics attempts to address this by building bridges between the two disciplines. In this review, how genomics and transcriptomics data in different formats can be utilized to assist proteogenomics application is briefly discussed. Subsequently, a much larger part of this review focuses on proteogenomics research articles that are published in the last five years that answer two important questions. First, how proteogenomics can be applied to tackle biological problems is discussed, covering genome annotation and precision medicine. Second, the latest developments in analytical technologies for data acquisition and the bioinformatics tools to interpret and visualize proteogenomics data are covered.
    Matched MeSH terms: Open Reading Frames
  15. Mat-Sharani S, Firdaus-Raih M
    BMC Bioinformatics, 2019 Feb 04;19(Suppl 13):551.
    PMID: 30717662 DOI: 10.1186/s12859-018-2550-2
    BACKGROUND: Small open reading frames (smORF/sORFs) that encode short protein sequences are often overlooked during the standard gene prediction process thus leading to many sORFs being left undiscovered and/or misannotated. For many genomes, a second round of sORF targeted gene prediction can complement the existing annotation. In this study, we specifically targeted the identification of ORFs encoding for 80 amino acid residues or less from 31 fungal genomes. We then compared the predicted sORFs and analysed those that are highly conserved among the genomes.

    RESULTS: A first set of sORFs was identified from existing annotations that fitted the maximum of 80 residues criterion. A second set was predicted using parameters that specifically searched for ORF candidates of 80 codons or less in the exonic, intronic and intergenic sequences of the subject genomes. A total of 1986 conserved sORFs were predicted and characterized.

    CONCLUSIONS: It is evident that numerous open reading frames that could potentially encode for polypeptides consisting of 80 amino acid residues or less are overlooked during standard gene prediction and annotation. From our results, additional targeted reannotation of genomes is clearly able to complement standard genome annotation to identify sORFs. Due to the lack of, and limitations with experimental validation, we propose that a simple conservation analysis can provide an acceptable means of ensuring that the predicted sORFs are sufficiently clear of gene prediction artefacts.

    Matched MeSH terms: Open Reading Frames/genetics*
  16. Ishige T, Gakuhari T, Hanzawa K, Kono T, Sunjoto I, Sukor JR, et al.
    PMID: 26075477 DOI: 10.3109/19401736.2015.1033694
    Here we report the complete mitochondrial genome of the Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae), which was determined using next-generation sequencing. The mitochondrial genome is 16,344 bp in length containing 13 protein-coding genes, 21 tRNAs and 2 rRNAs. It shows the typical pattern of bovine mitochondrial arrangement. Phylogenetic tree analysis of complete mtDNA sequences showed that Bornean banteng is more closely related to gaur than to other banteng subspecies. Divergence dating indicated that Bornean banteng and gaur diverged from their common ancestor approximately 5.03 million years ago. These results suggest that Bornean banteng might be a distinct species in need of conservation.
    Matched MeSH terms: Open Reading Frames
  17. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
    Matched MeSH terms: Open Reading Frames
  18. Lee CC, Lin CY, Hsu HW, Yang CS
    Arch Virol, 2020 Nov;165(11):2715-2719.
    PMID: 32776255 DOI: 10.1007/s00705-020-04769-2
    We report two novel RNA viruses from yellow crazy ants, (Anoplolepis gracilipes) detected using next-generation sequencing. The complete genome sequences of the two viruses were 10,662 and 8,238 nucleotides in length, respectively, with both possessing two open reading frames with three conserved protein domains. The genome organization is characteristic of members of the genus Triatovirus in the family Dicistroviridae. The two novel viruses were tentatively named "Anoplolepis gracilipes virus 1" and "Anoplolepis gracilipes virus 2" (AgrV-1 and AgrV-2). Phylogenetic analyses based on amino acid sequences of the non-structural polyprotein (ORF1) suggest that the two viruses are triatovirus-like viruses. This is the first report on the discovery of novel triatovirus-like viruses in yellow crazy ants with a description of their genome structure (two ORFs and conserved domains of RNA helicase, RNA-dependent RNA polymerase, and capsid protein), complete sequences, and viral prevalence across the Asia-Pacific region.
    Matched MeSH terms: Open Reading Frames
  19. Mat Isa N, Mohd Ayob J, Ravi S, Mustapha NA, Ashari KS, Bejo MH, et al.
    Virusdisease, 2019 Sep;30(3):426-432.
    PMID: 31803810 DOI: 10.1007/s13337-019-00530-9
    The main aim of our study was to explore the genome sequence of the inclusion body hepatitis associated Fowl adenovirus serotype 8b (FAdV-8b) UPM04217 and to study its genomic organisation. The nucleotide sequence of the whole genome of FAdV-8b UPM04217 was determined by using the 454 Pyrosequencing platform and the Sanger sequencing method. The complete genome was found to be 44,059 bp long with 57.9% G + C content and shared 97.5% genome identity with the reference FAdV-E genome (HG isolate). Interestingly, the genome analysis using ORF Finder, Glimmer3 and FGENESV predicted a total of 39 open reading frames (ORFs) compared to the FAdV-E HG that possessed 46 ORFs. Fourteen ORFs located within the central genomic region and 16 ORFs located within the left and right ends of the genome were assigned as being the high protein-coding regions. The fusion of the small ORFs at the right end terminal specifically in ORF22 and ORF33 could be the result of gene truncation in the FAdV-E HG. The frame shift mutation in ORF25 and other mutations in ORF13 and ORF17 might have lead to the emergence of genes that could have different functions. Besides, one of the minor capsid components, pVI, in FAdV-8b UPM04217 shared the highest similarity of 93% with that of FAdV-D, while only 47% similarity was found with FAdV-E. From the gene arrangement layout of the FAdV genome, FAdV-8b UPM04217 showed intermediate evolution between the FAdV-E HG and the FAdV-D although it was apparently more similar to the FAdV-E HG.
    Matched MeSH terms: Open Reading Frames
  20. Etebari K, Filipović I, Rašić G, Devine GJ, Tsatsia H, Furlong MJ
    Virus Res, 2020 03;278:197864.
    PMID: 31945420 DOI: 10.1016/j.virusres.2020.197864
    Oryctes rhinoceros nudivirus (OrNV) has been an effective biocontrol agent against the insect pest Oryctes rhinoceros (Coleoptera: Scarabaeidae) for decades, but there is evidence that resistance could be evolving in some host populations. We detected OrNV infection in O. rhinoceros from Solomon Islands and used Oxford Nanopore Technologies (ONT) long-read sequencing to determine the full length of the virus genomic sequence isolated from an individual belonging to a mitochondrial lineage (CRB-G) that was previously reported as resistant to OrNV. The complete circular genome of the virus consisted of 125,917 nucleotides, 1.698 bp shorter than the originally-described full genome sequence of Ma07 strain from Malaysia. We found 130 out of 139 previously annotated ORFs (seven contained interrupted/non-coding sequences, two were identified as duplicated versions of the existing genes), as well as a putatively inverted regions containing four genes. These results demonstrate the usefulness of a long-read sequencing technology for resolving potential structural variations when describing new virus isolates. While the Solomon Islands isolate exhibited 99.41 % nucleotide sequence identity with the originally described strain, we found several genes, including a core gene (vlf-1), that contained multiple amino acid insertions and/or deletions as putative polymorphisms of large effect. Our complete annotated genome sequence of a newly found isolate in Solomon Islands provides a valuable resource to help elucidate the mechanisms that compromise the efficacy of OrNV as a biocontrol agent against the coconut rhinoceros beetle.
    Matched MeSH terms: Open Reading Frames
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links