Displaying publications 61 - 80 of 152 in total

Abstract:
Sort:
  1. Payus CM, Jikilim C, Sentian J
    Heliyon, 2020 Sep;6(9):e04997.
    PMID: 33005801 DOI: 10.1016/j.heliyon.2020.e04997
    The purposes of this research were to study the characteristics chemistry of pH, anions and cations in rainwater, and to identify the possible sources that contributing to the acid precipitation during southwest monsoon season with occurrence of extreme drought event. During the southwest monsoon season, it normally occurs along with haze phenomenon that every year will hit Southeast Asia. This condition will aggravate with high acidic particles in the atmosphere due to the prolonged drought. The analysed parameters which involved pH, anions (NO3-, SO42- and Cl-) and cations (Ca2+, Mg2+, Na+ and K+) were analysed using pH meter, Hach DR 2800, argentometric method and ICP-OES. From the findings, it showed that acid rain occurred during the southwest monsoon season with the range of pH values from 4.95 ± 0.13 to 6.40 ± 0.03 and the total average of pH 5.71 ± 0.32. Anions NO3-, SO42- and Cl- were found to be the dominant compositions of the acid rain occurrences with higher concentrations detected. In overall, rural area recorded with higher acidity of precipitation at total average of pH 5.54 ± 0.39 compared to urban area at pH 5.77 ± 0.26. Rural area surprisingly recorded higher frequency occurrences of acid rain with pH lesser than 5.6 and below compared to urban area. As for public health and safety, all rainwater samples during the acid rain event were found exceeded the allowable limits of NWQS and WHO standards, that shown not suitable for skin contact, recreational purposes even for drinking purposes.
    Matched MeSH terms: Acid Rain
  2. Zafirah Z, Azidah A
    Sains Malaysiana, 2018;47:433-439.
    Thrips (Thysanoptera) are common pests on legume plants, yet little is known about their ecology or diversity in Peninsular
    Malaysia. In legumes, thrips are typically found in flowers, where their feeding activity causes malformations that
    eventually lead to crop damage. In this study, we examined the diversity of thrips species, particularly Megalurothrips
    usitatus, in three selected legume farms around Peninsular Malaysia (Janda Baik, Pahang; Bestari Jaya, Selangor; and
    Jelebu, Negeri Sembilan). Each month from April 2013 to May 2014, depending on growing season, legume flowers were
    inspected for thrips in five random plots from each farm. Sampling was performed six times in Bestari Jaya and Jelebu
    and twelve times in Janda Baik. The most abundant thrips species on legumes was M. usitatus (89.97%) followed by
    Thrips parvispinus (9.77%), T. hawaiiensis (0.13%) and Ceratothripoides brunneus (0.12%). The abundance of M. usitatus
    was not different between long bean, French bean and winged bean which equally distributed among different arbitrary
    strata on legume plants. Temperature and light intensity were found to be positively correlated with the abundance of
    M. usitatus, but relative humidity showed a negative relationship. M. usitatus was found in large numbers during hot
    and dry months, but in lower numbers during raining season. This study suggested that wet season may help to regulate
    the populations of M. usitatus on legume plants.
    Matched MeSH terms: Rain
  3. Sulaiman S, Jeffery J
    J Am Mosq Control Assoc, 1994 Sep;10(3):460-1.
    PMID: 7807097
    Between April 1987 and March 1988, populations of immature Aedes albopictus and Toxorhynchites spp. in bamboo pots were sampled weekly. Populations of Ae. albopictus and rainfall varied from month to month. During the heavy rainfall months of September and October 1987, larval counts of Ae. albopictus were high, between 30.8 and 49.2 larvae per week compared to 16 larvae per week during the low rainfall month of January 1988. A higher population of Toxorhynchites spp. was associated with a low population of the vector.
    Matched MeSH terms: Rain
  4. Syahrul Affandi Saidi, Beh, Jun Long, Mohd Sharizan Md Sarip, Wan Azani Mustafa
    MyJurnal
    This article presents a Wall Climbing Robot (WCR) that able to move on ferromagnetic vertical surface to carry out visual inspection process. Visual inspection process is important in the industry to check the condition of storage tank, surface of building, piping or equipment thus can prevents structures collapsing or explosion which would bring a huge loss to the company. Moreover, most of the structures nowadays is expose under the sun and rain, corrosion and cracks could easily occur on the surface after exposing under sunlight and rain a long period of time. Therefore the periodic visual inspection process need to be carry out to detect the damaged occur on the surface of the structure and take action at the fastest time to ensure the safety of the structures and extend the lifespan of the structures. With the well maintenance to the structures, the condition of the structures is monitored and the lifespan is longer. The risk of collapse of the building is decrease by a large margin. Normally, the periodic visual inspection process is performed by operator. Sometime the temporary scaffolding is needed to reach the higher place to carry out the inspection. However, this method create a hazardous environment to the operator and cause the safety of the operator threatened. Therefore, the proposed WCR could help operator to work at the hazardous environment. The permanent magnet is used to provide adhesion for WCR, thus WCR able to move on vertical ferromagnetic surface. The WCR is controlled by operator via wireless remote to reach the higher place or the hazardous environment. The operator then can stream the on the real time images via web browser which connected to the same network with the WCR. Hence, the condition of the surface can be observed.
    Matched MeSH terms: Rain
  5. Mahmud, A.R., Awad, A., Billa, R.
    MyJurnal
    Many residential areas of Kuala Lumpur are susceptible to landslides; this is seen in the frequency of landslide occurences in these areas. The objective of this study is to delineate landslide risk areas in support of development planning, monitoring and control of unstable areas. In this study, five landslide causative factors were extracted from satellite imagery and maps provided by the Geological Survey Department of Malaysia. Factors included in the study including land use, river density and lineament derived from Landsat ETM image, precipitation amount from rain gauge stations and lithology, were extracted from the geological map of the study area. Layers were analyzed and divided into subclasses. An average weightage score was applied to calculate the subclasses into percentage weights of influence on landslide. Overlay, geo-processing and geo-statistic techniques in GIS were used to discriminate these weighted subclasses into landslide susceptibility at low, medium and high levels of risk areas. Results showed very high susceptible areas covering 0.21% of Kuala Lumpur of which 5.02% were found in the highly urbanized areas. Meanwhile, a landslide susceptibility map was generated to show low, medium and high susceptible areas in Kuala Lumpur. Results were verified using recorded cases of landslides in Kuala Lumpur which showed a 77% agreement with the study.
    Matched MeSH terms: Rain
  6. Chua, Philip Yi Shean, Lee, Sue Laine, Tow, Zhen Jiang, Mantok, Richmund, Muhamad Khairul Hawari Muhamad Nor, Dorairaja, Lavena, et al.
    Int J Public Health Res, 2013;3(1):223-231.
    MyJurnal
    Rapid Rural Appraisal (RRA) is a systematic, semi-structured activity carried out in the field by a multidisciplinary team that is designed to obtain new information and hypotheses about rural life. This article reports the results of an RRA conducted in Kampung Paris 1 (KGP1), Kinabatangan, Sabah under the Annual Health Promotion Program of the School of Medicine, Universiti Malaysia Sabah. A systematic random sampling was used to recruit the villagers and data was obtained through compilation of pre-existing data, field observation, structured interviews with key informants and villagers. Cardiorespiratory diseases were prevalent in KGP1. Common water sources such as rain water collected in dug wells in KGP1 were unhygienic. Dangerous toxic fumes were produced by the burning of municipal wastes nearby village houses. The villagers of KGP1 were exposed to various farm animals, which may harbor zoonoses. Health care services are limited in KGP1. Villagers who were not poor (>RM897) represented 48% of the population, followed by the poor (RM503-897), 20% and the hardcore poor (1.00 person per bedroom. Poor water hygiene, polluted air from open burning, exposure to farm animals, poverty, poor education, overcrowding and inadequate health care services were among the few possible factors affecting the health of villagers in KGP1. Formal rigorous research should be conducted in the future to facilitate specific health interventions in areas of need such as KGP1.
    Matched MeSH terms: Rain
  7. Zaifol Samsu, Mohd Harun, Mahdi E. Mahmoud, Norasiah Ab Kasim, Katrul Hisham Alahudin, Zaiton Selamat
    MyJurnal
    An air fin cooler system consists of a tube bundle that is used to cool the various processing fluids in process industries that utilizes air as a cooling medium. The said tubes failed when exposed to corrosive environment(s). Tubes located at the bottom row of the air fin cooler were corroded as a result of exposure to rain water, brought in by induced air when the wind blows. The tube material is A179 Carbon steel. Two tubes, namely Tube A and Tube B along with an aluminum fin in each tube were investigated. A leak was observed on tube A, probably due to Corrosion Under Deposit mechanism. A general corrosion attack was observed at tube B, and macroscopic analysis showed that the corrosion occurred along the grain boundaries, which consist of ferrite and pearlite. Microanalysis showed that the corrosion product on the outer surface of the tube consists of Fe, O, S and Cl elements. It is concluded that the humid environment contains corrosive elements such as S and Cl. EDAX analysis on the fin showed that the material is pure aluminum. However, the aluminum was corroded by galvanized corrosion and produced brittle Al2O3 as a result.
    Matched MeSH terms: Rain
  8. Lani NHM, Syafiuddin A, Yusop Z, Adam UB, Amin MZBM
    Sci Total Environ, 2018 Sep 15;636:1171-1179.
    PMID: 29913579 DOI: 10.1016/j.scitotenv.2018.04.418
    A rainwater harvesting system (RWHS) was proposed for small and large commercial buildings in Malaysia as an alternative water supply for non-potable water consumption. The selected small and large commercial buildings are AEON Taman Universiti and AEON Bukit Indah, respectively. Daily rainfall data employed in this work were obtained from the nearest rainfall station at Senai International Airport, which has the longest and reliable rainfall record (29 years). Water consumption at both buildings were monitored daily and combined with the secondary data obtained from the AEON's offices. The mass balance model was adopted as the simulation approach. In addition, the economic benefits of RWHS in terms of percentage of reliability (R), net present value (NPV), return on investment (ROI), benefit-cost ratio (BCR), and payback period (PBP) were examined. Effects of rainwater tank sizes and water tariffs on the economic indicators were also evaluated. The results revealed that the percentages of reliability of the RWHS for the small and large commercial buildings were up to 93 and 100%, respectively, depending on the size of rainwater tank use. The economic benefits of the proposed RWHS were highly influenced by the tank size and water tariff. At different water tariffs between RM3.0/m3 and RM4.7/m3, the optimum PBPs for small system range from 6.5 to 10.0 years whereas for the large system from 3.0 to 4.5 years. Interestingly, the large commercial RWHS offers better NPV, ROI, BCR, and PBP compared to the small system, suggesting more economic benefits for the larger system.
    Matched MeSH terms: Rain
  9. Zulkafli Abdul Rashid, Mohammad Noor Azmai Amal
    Sains Malaysiana, 2018;47:1941-1951.
    This study assesses the influence of water quality on fish occurrences in Sungai Pahang, Maran District, Pahang, Malaysia. Water quality and fish samplings were conducted at seven sampling sites in the district for 13 consecutive months. We used canonical correspondence analyses (CCA) to determine the influence of water quality on monthly fish species occurrences. The ranges of water quality parameters were quite high considering the measurements were made during rainy and dry seasons throughout the year. A total of 2,075 individual fish was captured which comprised of 22 different families and 65 species. Family Cyprinidae recorded the highest number of fish species of the area (27 species; 41.5%), followed by Bagridae (five species; 7.69%) and Pangasiidae (five species; 7.69%). Three fish species categorized as endangered, including Balantiocheilos melanopterus, Probarbus jullieni and Pangasianodon hypophthalmus were also collected. The collected fish species were divided into three groups (A to C), which was clearly separated in the CCA ordination diagram. The most important water quality variables for the fish occurrences in this river were pH, followed by temperature, conductivity, alkalinity and phosphate. Data analysis indicates that the occurrence of fishes were influenced by a combination of water quality parameters, but not associated with sampling month. The results present a new data from a study of fish assemblage and their habitat condition which may be important in fisheries activity and fish conservation of the river in the future.
    Matched MeSH terms: Rain
  10. Abdullah SNF, Ismail A, Juahir H, Lananan F, Hashim NM, Ariffin N, et al.
    Environ Sci Pollut Res Int, 2021 Jul;28(27):35613-35627.
    PMID: 33666850 DOI: 10.1007/s11356-021-12772-6
    Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.
    Matched MeSH terms: Rain
  11. Jhonson P, Goh HW, Chan DJC, Juiani SF, Zakaria NA
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24562-24574.
    PMID: 36336739 DOI: 10.1007/s11356-022-23605-5
    Bioretention systems are among the most popular stormwater best management practices (BMPs) for urban runoff treatment. Studies on plant performance using bioretention systems have been conducted, especially in developed countries with a temperate climate, such as the USA and Australia. However, these results might not be applicable in developing countries with tropical climates due to the different rainfall regimes and the strength of runoff pollutants. Thus, this study focuses on the performance of tropical plants in treating urban runoff polluted with greywater using a bioretention system. Ten different tropical plant species were triplicated and planted in 30 mesocosms with two control mesocosms without vegetation. One-way ANOVA was used to analyze the performance of plants, which were then ranked based on their performance in removing pollutants using the total score obtained for each water quality test. Results showed that vetiver topped the table with 86.4% of total nitrogen (TN) removal, 93.5% of total phosphorus (TP) removal, 89.8% of biological oxygen demand (BOD) removal, 90% of total suspended solids (TSS) removal, and 92.5% of chemical oxygen demand (COD) removal followed by blue porterweed, Hibiscus, golden trumpet, and tall sedge which can be recommended to be employed in future bioretention studies.
    Matched MeSH terms: Rain
  12. Jani J, Yang YY, Lusk MG, Toor GS
    PLoS One, 2020;15(2):e0229715.
    PMID: 32109256 DOI: 10.1371/journal.pone.0229715
    Stormwater runoff is a leading cause of nitrogen (N) transport to water bodies and hence one means of water quality deterioration. Stormwater runoff was monitored in an urban residential catchment (drainage area: 3.89 hectares) in Florida, United States to investigate the concentrations, forms, and sources of N. Runoff samples were collected over 22 storm events (May to September 2016) at the end of a stormwater pipe that delivers runoff from the catchment to the stormwater pond. Various N forms such as ammonium (NH4-N), nitrate (NOx-N), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were determined and isotopic characterization tools were used to infer sources of NO3-N and PON in collected runoff samples. The DON was the dominant N form in runoff (47%) followed by PON (22%), NOx-N (17%), and NH4-N (14%). Three N forms (NOx-N, NH4-N, and PON) were positively correlated with total rainfall and antecedent dry period, suggesting longer dry periods and higher rainfall amounts are significant drivers for transport of these N forms. Whereas DON was positively correlated to only rainfall intensity indicating that higher intensity rain may flush out DON from soils and cause leaching of DON from particulates present in the residential catchment. We discovered, using stable isotopes of NO3-, a shifting pattern of NO3- sources from atmospheric deposition to inorganic N fertilizers in events with higher and longer duration of rainfall. The stable isotopes of PON confirmed that plant material (oak detritus, grass clippings) were the primary sources of PON in stormwater runoff. Our results demonstrate that practices targeting both inorganic and organic N are needed to control N transport from residential catchments to receiving waters.
    Matched MeSH terms: Rain
  13. Hii JL, Birley MH, Sang VY
    Med Vet Entomol, 1990 Apr;4(2):135-40.
    PMID: 2132976
    An exophilic population of the vector mosquito Anopheles balabacensis Baisas was investigated in two mark-recapture studies (16.ix-13.x.1986 and 6-26.i.1987) at an inland, foothill village in Sabah, Malaysia. Wild female mosquitoes were intercepted as they came to feed on man or buffalo, given a bloodmeal, marked with fluorescent dust and released. The recapture rate was about 12%. A new method of analysis is proposed which uses cross-correlation and a time series model. The estimated survival per oviposition cycle was 0.48-0.54 and the oviposition cycle interval 2-3 days.
    Matched MeSH terms: Rain
  14. Yap HH, Ho SC
    PMID: 70078
    Emulsifiable concentrates of DursbanR (chlorpyrifos) and Dowco 214 (chlorpyrifos-methyl) were tested as mosquito larvicides using Hudson knapsack sprayers on small plots of rice-fields on Penang Island. The mosquitoes found in these rice-fields are predominantly Anopheles campestris and Culex tritaeniorhynchus. At dosages of 14, 28 and 56 gm hectare-1, Dursban is effective in maintaining the rice-fields free of Anopheles larvae for at least 2, 3 and 7 days respectively. Dowco 214 at 56 gm hectare-1 is able to keep the fields free of all mosquito larvae for at least 2 days.
    Matched MeSH terms: Rain
  15. Clink DJ, Groves T, Ahmad AH, Klinck H
    PLoS One, 2021;16(2):e0246564.
    PMID: 33592004 DOI: 10.1371/journal.pone.0246564
    Great argus pheasants are known for their elaborate visual mating displays, but relatively little is known about their general ecology. The use of passive acoustic monitoring-which relies on long-term autonomous recorders-can provide insight into the behavior of visually cryptic, yet vocal species such as the great argus. Here we report the results of an analysis of vocal behavior of the Bornean great argus (Argusianus argus grayi) in Sabah, Malaysia, using data collected with 11 autonomous recording units. Great argus regularly emitted two call types, the long call and the short call, and we found that although both call types were emitted throughout the day, the short calls were more likely to occur during the morning hours (06:00-12:00LT). Great argus were less likely to call if there was rain, irrespective of the time of day. A substantial portion of calls at our site (~20%) were emitted between the hours of 18:00-06:00LT. We found that for nighttime calls, calling activity increased during new moon periods and decreased during periods of rain. We attribute the negative influence of rain on calling to increased energetic costs of thermoregulation during wet periods, and propose that the influence of the lunar cycle may be related to increased predation risk during periods with high levels of moonlight. Little is known about the behavioral ecology of great argus on Borneo, so it is difficult to know if the results we report are typical, or if we would see differences in calling activity patterns depending on breeding season or changes in food availability. We advocate for future studies of great argus pheasant populations using paired camera and acoustic recorders, which can provide further insight into the behavior of this cryptic species.
    Matched MeSH terms: Rain
  16. Walsh RP, Bidin K, Blake WH, Chappell NA, Clarke MA, Douglas I, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3340-53.
    PMID: 22006973 DOI: 10.1098/rstb.2011.0054
    Long-term (21-30 years) erosional responses of rainforest terrain in the Upper Segama catchment, Sabah, to selective logging are assessed at slope, small and large catchment scales. In the 0.44 km(2) Baru catchment, slope erosion measurements over 1990-2010 and sediment fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-linked, including fresh landslips and gullying of scars and toe deposits of 1994-1996 landslides. Analysis and modelling of 5-15 min stream-suspended sediment and discharge data demonstrate a reduction in storm-sediment response between 1996 and 2009, but not yet to pre-logging levels. An unmixing model using bed-sediment geochemical data indicates that 49 per cent of the 216 t km(-2) a(-1) 2009 sediment yield comes from 10 per cent of its area affected by road-linked landslides. Fallout (210)Pb and (137)Cs values from a lateral bench core indicate that sedimentation rates in the 721 km(2) Upper Segama catchment less than doubled with initially highly selective, low-slope logging in the 1980s, but rose 7-13 times when steep terrain was logged in 1992-1993 and 1999-2000. The need to keep steeplands under forest is emphasized if landsliding associated with current and predicted rises in extreme rainstorm magnitude-frequency is to be reduced in scale.
    Matched MeSH terms: Rain/chemistry
  17. Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I
    Environ Monit Assess, 2012 Mar;184(3):1325-34.
    PMID: 21472384 DOI: 10.1007/s10661-011-2043-5
    This study aims to determine the composition of surfactants in the lake surface microlayer, rainwater, and atmospheric aerosols in the area surrounding Lake Chini, Pahang. Surfactants in the lake surface microlayer were taken from seven different stations around the lake, while samples of rainwater were taken from five different sampling stations. The samples of atmospheric aerosols were collected from the Lake Chini Research Centre which is in close proximity to the lake. The colorimetric analysis method was used to determine the composition and concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The concentration of anionic surfactants, as MBAS, in the surface microlayer ranged between 0.08 to 0.23 μmol L(-1), while the range of concentration of cationic surfactants as DBAS ranged from 0.09 to 0.11 μmol L(-1). The concentration of MBAS was higher in rainwater when compared to surfactants in the lake surface microlayer. The high concentration of surfactants in the fine mode of atmospheric aerosols suggests that natural and anthropogenic sources of surfactants contribute to the atmospheric surfactants.
    Matched MeSH terms: Rain/chemistry
  18. Obaid HA, Shahid S, Basim KN, Chelliapan S
    Water Sci Technol, 2015;72(6):1029-42.
    PMID: 26360765 DOI: 10.2166/wst.2015.297
    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.
    Matched MeSH terms: Rain*
  19. Chang CJ, Hsu HH, Cheah W, Tseng WL, Jiang LC
    Sci Rep, 2019 04 01;9(1):5421.
    PMID: 30931981 DOI: 10.1038/s41598-019-41889-5
    In addition to monsoon-driven rainfall, the Maritime Continent (MC) is subject to heavy precipitation caused by the Madden-Julian Oscillation (MJO), a tropical convection-coupled circulation that propagates eastward from the Indian to the Pacific Ocean. This study shows that riverine runoff from MJO-driven rainfall in the western MC significantly enhances phytoplankton biomass not only in the coastal regions but as far as the nutrient-poor Banda Sea, located 1,000 km downstream of the riverine source. We present observational estimates of the chlorophyll-a concentration in the Banda Sea increasing by 20% over the winter average within an MJO life cycle. The enhancement of phytoplankton in the central Banda Sea is attributed to two coinciding MJO-triggered mechanisms: enhanced sediment loading and eastward advection of waters with high sediment and chlorophyll concentrations. Our results highlight an unexpected effect of MJO-driven rainfall on the downstream oceanic region. This finding has significant implications for the marine food chain and biogeochemical processes in the MC, given the increasing deforestation rate and projections that global warming will intensify both the frequency and strength of MJO-driven rainfall in the MC.
    Matched MeSH terms: Rain*
  20. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
    Matched MeSH terms: Rain/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links