Displaying publications 61 - 80 of 1108 in total

Abstract:
Sort:
  1. Kistenich S, Rikkinen JK, Thüs H, Vairappan CS, Wolseley PA, Timdal E
    MycoKeys, 2018.
    PMID: 30294209 DOI: 10.3897/mycokeys.40.26025
    Krogiaborneensis Kistenich & Timdal, K.isidiata Kistenich & Timdal and K.macrophylla Kistenich & Timdal are described as new species, the first from Borneo and the two latter from New Caledonia. The new species are supported by morphology, secondary chemistry and DNA sequence data. Krogiaborneensis and K.isidiata contain sekikaic and homosekikaic acid, both compounds reported here for the first time from the genus. Krogiamacrophylla contains an unknown compound apparently related to boninic acid as the major compound. DNA sequences (mtSSU and nrITS) are provided for the first time for Krogia and a phylogeny of the genus based on 15 accessions of five of the six accepted species is presented. Krogiaantillarum is reported as new to Brazil, Guatemala and Mexico.
    Matched MeSH terms: Sequence Analysis, DNA
  2. Nur Haslindawaty Abd Rashid, Siti Farah Quraisha, Sundararajulu Panneerchelvam, Zafarina Zainuddin
    Sains Malaysiana, 2015;44:1119-1123.
    This study was conducted to characterize the selected marine fish species using partial sequence of mtDNA 12S and 16S rRNA gene. PCR amplification of 12S and 16S rRNA generated PCR amplicons at 350 and 440 bp lengths, respectively. Sequence analysis was performed using BioEdit software. Phylogenetic tree was constructed using MEGA software. Two reference species have been used namely Gobio gobio (AB239596 and EF112528) and Pentapodus caninus (DQ533268 and DQ532933). Based on the result obtained, mtDNA 12S and 16S rRNA were found to be useful as molecular markers for fish species identification. These markers will provide correct identification of fish species when considered along with morphological characteristics.
    Matched MeSH terms: Sequence Analysis
  3. Ku Yusof KMK, Ismail SS, Azid A, Sani MSA, Isa NM, Mohamat Zawawi MZ
    Data Brief, 2020 Apr;29:105210.
    PMID: 32071985 DOI: 10.1016/j.dib.2020.105210
    This paper provides detail on sequence analysis of hazy days based on eight monitoring stations from three states (Kelantan, Terengganu and Pahang) in the eastern region of Peninsular Malaysia. The dataset comprises of 1502 daily mean hazy days that had been measured for a decade. The meteorology data namely wind speed, wind direction, air temperature, relative humidity and particulate matter (PM10) were used to comprehend the variability, and the relationship existed amongst variables. The final dataset consists of a summary descriptive analysis and a boxplot, where all five variables were involved, including the minimum, maximum, mean, 1st quartile, median, 3rd quartile and standard deviation are presented. Apart from descriptive analysis, the normality test and histogram were performed as well.
    Matched MeSH terms: Sequence Analysis
  4. Nadiah Abu, Noraini Nordin, Noorjahan Banu Alitheen, Nadiah Abu, Sheau Wei Tan, Swee Keong Yeap, et al.
    Sains Malaysiana, 2018;47:303-308.
    RNA-seq has become an essential tool in molecular research. Nevertheless, application of RNA-seq was limited by cost and technical difficulties. Illumina has introduced the cost effective and ease to handle Truseq Targeted RNA Sequencing. In this study, we present the requirements and the optimization procedure for this Truseq Targeted RNA sequencing on cell line. Total RNA was recommended as starting materials but it required optimization including additional purification step and adjusting the AMPure beads ratio to eliminate unwanted contaminants. This can be resolved by using PolyA-enriched mRNA as starting material. TREx is a useful assay to evaluate gene expression. Quality library of TREx can be prepared by adding multiple washing steps or changing input sample to mRNA.
    Matched MeSH terms: Sequence Analysis, RNA
  5. Lau CK, Sim KS, Tso CP
    Scanning, 2011 Jan-Feb;33(1):13-20.
    PMID: 21462221 DOI: 10.1002/sca.20216
    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  6. Runtuwene LR, Sathirapongsasuti N, Srisawat R, Komalamisra N, Tuda JSB, Mongan AE, et al.
    BMC Res Notes, 2022 Feb 12;15(1):44.
    PMID: 35151353 DOI: 10.1186/s13104-022-05927-2
    OBJECTIVE: To disseminate the portable sequencer MinION in developing countries for the main purpose of battling infectious diseases, we found a consortium called Global Research Alliance in Infectious Diseases (GRAID). By holding and inviting researchers both from developed and developing countries, we aim to train the participants with MinION's operations and foster a collaboration in infectious diseases researches. As a real-life example in which resources are limited, we describe here a result from a training course, a metagenomics analysis from two blood samples collected from a routine cattle surveillance in Kulan Progo District, Yogyakarta Province, Indonesia in 2019.

    RESULTS: One of the samples was successfully sequenced with enough sequencing yield for further analysis. After depleting the reads mapped to host DNA, the remaining reads were shown to map to Theileria orientalis using BLAST and OneCodex. Although the reads were also mapped to Clostridium botulinum, those were found to be artifacts derived from the cow genome. An effort to construct a consensus sequence was successful using a reference-based approach with Pomoxis. Hence, we concluded that the asymptomatic cow might be infected with T. orientalis and showed the usefulness of sequencing technology, specifically the MinION platform, in a developing country.

    Matched MeSH terms: Sequence Analysis, DNA
  7. Puah SM, Fong SP, Kee BP, Puthucheary SD, Chua KH
    Microb Pathog, 2022 Jan;162:105345.
    PMID: 34896547 DOI: 10.1016/j.micpath.2021.105345
    Recently, Elizabethkingia species have gained attention as a cause of life-threatening infections. The identification via phenotypic methods of three important species- Elizabethkingia meningoseptica, E. anophelis and E. miricola is difficult. Our objectives were to re-assess 30 archived Flavobacterium meningosepticum isolates using 16S rRNA gene sequencing, ERIC-PCR, and biofilm formation assay. Twenty-four isolates were re-identified as E. anophelis and 6 as E. miricola. All of them had the ability to form biofilm as shown in microtiter plate assay based on crystal violet staining. Overall, E. anophelis had a higher specific biofilm formation index compared to E. miricola. A total of 42% (10 out of 24) of E. anophelis were classified as strong, 29% (7 out of 24) as moderate and 29% (7 out of 24) as weak biofilm producers. E. miricola, 17% (1 out of 6) isolates were strong biofilm producers, 50% (3 out of 6) moderate and 33% (2 out of 6) were weak producers. E. anophelis from tracheal secretions were significantly associated with (p = 0.0361) strong biofilm formation. In summary, this study showed that the isolates originally identified as F. meningosepticum were re-classified using the 16S rRNA gene as one of two Elizabethkingia species. The ability of E. anophelis to form strong biofilm in endotracheal tubes indicates their probable role in the pathogenesis of Elizabethkingia infections.
    Matched MeSH terms: Sequence Analysis, DNA
  8. Tan LW, Tan CS, Rahman ZA, Goh HH, Ismail I, Zainal Z
    Data Brief, 2017 Oct;14:267-271.
    PMID: 28795104 DOI: 10.1016/j.dib.2017.07.047
    The dataset presented in this article describes microarray experiment of Auxin-binding protein 57, Abp57-overexpressing transgenic rice. The gene expression profiles were generated using Affymetrix GeneChip® Rice (Cn) Gene 1.0 ST Arrays. Total RNA from seedlings tissue of transgenic rice and wildtype, which serve as control were used as starting materials for microarray experiment. Detailed experimental methods and data analysis were described here. The raw and normalized microarray data were deposited into Gene Expression Omnibus (GEO) under accession number GSE99055.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  9. Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, et al.
    PLoS One, 2018;13(1):e0189947.
    PMID: 29385175 DOI: 10.1371/journal.pone.0189947
    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
    Matched MeSH terms: Sequence Analysis
  10. Chong, S. Y., Rao, P. V., Soon, J. M.
    MyJurnal
    Street-vended beverages are commonly prepared by mechanical extraction of the pulp, usually
    unpasteurised and requires multiple handling steps. Foodborne pathogens transmitted via skin of
    street vendors or via faecal-oral route may contaminate the preparation surfaces and beverages.
    The aim of this study is to identify Escherichia spp. strains of street-vended beverages and their
    associated preparation surfaces using 16s rRNA analysis. The hygienic practice of vendors was represented by Staphylococcus spp. analysis and Staphylococcus aureus is not detected in beverages and associated preparation surfaces. A total of 80 samples (18 beverages, 15 swab
    samples and 47 direct film samples) were collected followed by enumeration of microbial load.
    Polymerase Chain Reaction (PCR) amplification and 16S ribosomal ribonucleic acid (rRNA)
    sequencing were carried out. Results of 16S rRNA sequence analysis indicated that three gram-negative isolates were identified as Escherichia coli RM9387 (Accession no. CP009104.1),
    Escherichia coli c164 (Accession no. JQ781646.1) and Escherichia fergusonii E10 (Accession no. KJ626264.1) with similarity value of 99% respectively.
    Matched MeSH terms: Sequence Analysis
  11. Kamiya K, Harada K, Clyde MM, Mohamed AL
    Genes Genet Syst, 2002 Jun;77(3):177-86.
    PMID: 12207039
    The genetic variation of Trigonobalanus verticillata, the most recently described genus of Fagaceae, was studied using chloroplast DNA sequences and AFLP fingerprinting. This species has a restricted distribution that is known to include seven localities in tropical lower montane forests in Malaysia and Indonesia. A total of 75 individuals were collected from Bario, Kinabalu, and Fraser's Hill in Malaysia. The sequences of rbcL, matK, and three non-coding regions (atpB-rbcL spacer, trnL intron, and trnL-trnF spacer) were determined for 19 individuals from these populations. We found a total of 30 nucleotide substitutions and four length variations, which allowed identification of three haplotypes characterizing each population. No substitutions were detected within populations, while the tandem repeats in the trnL -trnF spacer had a variable repeat number of a 20-bp motif only in Kinabalu. The differentiation of the populations inferred from the cpDNA molecular clock calibrated with paleontological data was estimated to be 8.3 MYA between Bario and Kinabalu, and 16.7 MYA between Fraser's Hill and the other populations. In AFLP analysis, four selective primer pairs yielded a total of 431 loci, of which 340 (78.9%) were polymorphic. The results showed relatively high gene diversity (H(S) = 0.153 and H(T) = 0.198) and nucleotide diversity (pi(S) = 0.0132 and pi(T) = 0.0168) both within and among the populations. Although the cpDNA data suggest that little or no gene flow occurred between the populations via seeds, the fixation index estimated from AFLP data (F(ST) = 0.153 and N(ST) = 0.214) implies that some gene flow occurs between populations, possibly through pollen transfer.
    Matched MeSH terms: Sequence Analysis, DNA
  12. Abdelsalam M, Eissa AE, Chen SC
    J Adv Res, 2015 Mar;6(2):233-8.
    PMID: 25750757 DOI: 10.1016/j.jare.2013.12.003
    Streptococcus dysgalactiae is an emerging pathogen of fish. Clinically, infection is characterized by the development of necrotic lesions at the caudal peduncle of infected fishes. The pathogen has been recently isolated from different fish species in many countries. Twenty S. dysgalactiae isolates collected from Japan, Taiwan, Malaysia and Indonesia were molecularly characterized by biased sinusoidal field gel electrophoresis (BSFGE) using SmaI enzyme, and tuf gene sequencing analysis. DNA sequencing of ten S. dysgalactiae revealed no genetic variation in the tuf amplicons, except for three strains. The restriction patterns of chromosomal DNA measured by BSFGE were differentiated into six distinct types and one subtype among collected strains. To our knowledge, this report gives the first snapshot of S. dysgalactiae isolates collected from different countries that are localized geographically and differed on a multinational level. This genetic unrelatedness among different isolates might suggest a high recombination rate and low genetic stability.
    Matched MeSH terms: Sequence Analysis, DNA
  13. Awuah WA, Roy S, Tan JK, Adebusoye FT, Qiang Z, Ferreira T, et al.
    J Cell Mol Med, 2024 Apr;28(7):e18159.
    PMID: 38494861 DOI: 10.1111/jcmm.18159
    Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.
    Matched MeSH terms: Sequence Analysis, RNA
  14. Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al.
    Gigascience, 2019 Sep 01;8(9).
    PMID: 31494670 DOI: 10.1093/gigascience/giz108
    BACKGROUND: Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation.

    FINDINGS: Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available.

    CONCLUSIONS: We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.

    Matched MeSH terms: Sequence Analysis, DNA
  15. Jumat MI, Chin KL
    World J Microbiol Biotechnol, 2024 Jul 25;40(9):279.
    PMID: 39048776 DOI: 10.1007/s11274-024-04089-6
    Mycobacterium tuberculosis (Mtb), the tuberculosis-causing agent, exhibits diverse genetic lineages, with known links to virulence. While genomic and transcriptomic variations between modern and ancient Mtb lineages have been explored, the role of small non-coding RNA (sRNA) in post-translational gene regulation remains largely uncharted. In this study, Mtb Lineage 1 (L1) Sabahan strains (n = 3) underwent sRNA sequencing, revealing 351 sRNAs, including 23 known sRNAs and 328 novel ones identified using ANNOgesic. Thirteen sRNAs were selected based on the best average cut-off value of 300, with RT-qPCR revealing significant expression differences for sRNA 1 (p = 0.0132) and sRNA 29 (p = 0.0012) between Mtb L1 and other lineages (L2 and L4, n = 3) (p > 0.05). Further characterization using RACE (rapid amplification of cDNA ends), followed by target prediction with TargetRNA3 unveils that sRNA 1 (55 base pairs) targets Rv0506, Rv0697, and Rv3590c, and sRNA 29 (86 base pairs) targets Rv33859c, Rv3345c, Rv0755c, Rv0107c, Rv1817, Rv2950c, Rv1181, Rv3610c, and Rv3296. Functional characterization with Mycobrowser reveals these targets involved in regulating intermediary metabolism and respiration, cell wall and cell processes, lipid metabolism, information pathways, and PE/PPE. In summary, two novel sRNAs, sRNA 1 and sRNA 29, exhibited differential expression between L1 and other lineages, with predicted roles in essential Mtb functions. These findings offer insights into Mtb regulatory mechanisms, holding promise for the development of improved tuberculosis treatment strategies in the future.
    Matched MeSH terms: Sequence Analysis, RNA
  16. Voon K, Ng QM, Yu M, Wang LF, Chua KB
    PMID: 23077814
    Viruses in the family Picornaviridae are classified into nine genera. Within the family Picornaviridae, two species: Encephalomyocarditis virus and Theilovirus, are listed under the genus Cardiovirus. A novel Theilovirus, Saffold virus (SAFV), was first reported in 2007. Since then, numerous SAFV isolates have been detected around the world and genetic recombinations have been reported among them. In 2009, SAFV-Penang was isolated from a febrile child with influenza-like illness in Malaysia. SAFV-Penang is a genotype 3 SAFV. In this study we investigated the genome features of SAFV-Penang to exclude the possibility it is a recombinant variant. SAFV-Penang was found not to be a recombinant variant but to have three unique non-synonymous substitutions, alanine [A689], lysine [K708] and isoleucine [I724] in the VP1 protein.
    Matched MeSH terms: Sequence Analysis, DNA
  17. Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, et al.
    Microbiol Spectr, 2024 Feb 06;12(2):e0336723.
    PMID: 38214523 DOI: 10.1128/spectrum.03367-23
    Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
    Matched MeSH terms: Sequence Analysis, DNA
  18. Khatir NM, Abdul-Malek Z, Banihashemian SM
    Sensors (Basel), 2014;14(10):19229-41.
    PMID: 25320908 DOI: 10.3390/s141019229
    The fabrication of Metal-DNA-Metal (MDM) structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25-55 °C) and magnetic fields (0-1200 mT) on the current-voltage (I-V) features of Au-DNA-Au (GDG) structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods*
  19. Tan LL, Lau TY, Timothy W, Prabakaran D
    ScientificWorldJournal, 2014;2014:935846.
    PMID: 25574497 DOI: 10.1155/2014/935846
    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979.
    Matched MeSH terms: Sequence Analysis, DNA*
  20. Tan CS, Ting WS, Mohamad MS, Chan WH, Deris S, Shah ZA
    Biomed Res Int, 2014;2014:213656.
    PMID: 25250315 DOI: 10.1155/2014/213656
    When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links