Displaying publications 61 - 80 of 248 in total

Abstract:
Sort:
  1. Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E
    J Cell Physiol, 2020 10;235(10):6462-6495.
    PMID: 32239727 DOI: 10.1002/jcp.29660
    Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
    Matched MeSH terms: Signal Transduction/drug effects
  2. Lai SL, Wong PF, Lim TK, Lin Q, Mustafa MR
    Proteomics, 2015 May;15(9):1608-21.
    PMID: 25594392 DOI: 10.1002/pmic.201400039
    Melanoma is a lethal form of skin cancer with rising global incidence. However, limited treatment options are available for advanced melanoma and this is further compounded by the development of resistance toward existing drugs. Panduratin A (PA), a cyclohexanyl chalcone found in Boesenbergia rotunda, was investigated for its cytotoxic potentials against human malignant melanoma A375 cells. Our initial findings revealed that mitochondrion is the primary acting site of PA on A375 cancer cells and the cytotoxic mechanisms of PA were further investigated using a temporal quantitative proteomics approach by iTRAQ 2D-LC-MS/MS. Comprehensive proteomics analysis identified 296 proteins that were significantly deregulated in PA-treated A375 cells and revealed the involvement of mitochondrial oxidative phosphorylation, secretory and ER stress pathway, and apoptosis. We further confirmed that the PA-induced apoptosis was mediated by prolonged ER stress at least in part via the PERK/eIF2α/ATF4/CHOP pathway. Pretreatment with cycloheximide, an ER stress inhibitor rescued PA-induced cell death, which was accompanied by the suppression of ER-stress-related HSPA5 and CHOP proteins. The present study provides comprehensive mechanistic insights into the cytotoxic mechanisms of PA.
    Matched MeSH terms: Signal Transduction/drug effects
  3. Andas AR, Abdul AB, Rahman HS, Sukari MA, Abdelwahab SI, Samad NA, et al.
    Asian Pac J Cancer Prev, 2015;16(10):4311-6.
    PMID: 26028091
    Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an IC50 value of 12.0 μg/mL, without affecting human normal liver cells, WRL-68 (IC50>50 μg/mL) causing G0/G1 cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of NF-κB that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC.
    Matched MeSH terms: Signal Transduction/drug effects*
  4. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Signal Transduction/drug effects
  5. Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R, et al.
    Oncogene, 2016 Jul 28;35(30):3965-75.
    PMID: 26616855 DOI: 10.1038/onc.2015.466
    Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.
    Matched MeSH terms: Signal Transduction/drug effects*
  6. Mohd Fisall UF, Ismail NZ, Adebayo IA, Arsad H
    Mol Biol Rep, 2021 May;48(5):4465-4475.
    PMID: 34086162 DOI: 10.1007/s11033-021-06466-y
    Moringa oleifera is a well-known medicinal plant which has anti-cancer and other biological activities. This research aims to determine the cytotoxic and apoptotic effect of M. oleifera leave extract on the breast cancer (MCF7) cells. The extracts were prepared using hexane, dichloromethane, chloroform and n-butanol by fractionating the crude 80% methanol extract of the plant leaves. The cytotoxic effect of the extracts on MCF7 cells were determined using CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay. The apoptosis study was conducted using Annexin V-FITC analysis and confirmed by Western blotting using selected proteins, which are p53, Bax, cytochrome c and caspase 8. Our results showed that the dichloromethane (DF-CME-MOL) extract was selectively cytotoxic to MCF7 cells (5 μg/mL) without significantly inhibiting the non-cancerous breast (MCF 10A) cells. It had the highest selectivity index (SI) value of 9.5 among the tested extracts. It also induced early apoptosis and increased the expressions of pro-apoptotic proteins Bax, caspase 8 and p53 in MCF7 cells. Gas chromatography-mass spectrometry analysis (GC-MS) analysis showed that the major compounds found in DF-CME-MOL were benzeneacetonitrile, 4-hydroxy- and benzeneacetic acid, 4-hydroxy-, methyl ester among others that were detected. Thus, DF-CME-MOL extract was found to inhibit the proliferation of MCF7 cells by apoptosis induction, which is likely due to the activities of the detected phytochemical compounds of the extract.
    Matched MeSH terms: Signal Transduction/drug effects
  7. Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A
    Biofactors, 2015 Jan-Feb;41(1):1-14.
    PMID: 25545372 DOI: 10.1002/biof.1195
    Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
    Matched MeSH terms: Signal Transduction/drug effects*
  8. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
    Matched MeSH terms: Signal Transduction/drug effects*
  9. Masir N, Akhter A, Roshan TM, Florence CS, Abdul-Rahman F, Tumian NR, et al.
    J Clin Pathol, 2019 Sep;72(9):630-635.
    PMID: 31189540 DOI: 10.1136/jclinpath-2019-205837
    AIMS: Heightened B-cell receptor (BCR) activity in diffuse large B-cell lymphoma (DLBCL) is well established, and a subset of patients with relapsed DLBCL can benefit from BCR-targeted therapies. Universal outreach of such emerging therapies mandates forming a global landscape of BCR molecular signalling in DLBCL, including Southeast Asia.

    METHODS: 79 patients with DLBCL (nodal, 59% and extranodal, 41%) treated with rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) therapy were selected. Expression levels of BCR and linked signalling pathway molecules were inter-related with Lymph2Cx-based cell of origin (COO) types and overall survival (OS).

    RESULTS: Activated B-cell (ABC) type DLBCL constituted 49% (39/79) compared with germinal centre B-cell (GCB) type DLBCL (29/79; 37%) and revealed poor prognosis (p=0.013). In ABC-DLBCL, high BTK expression exerted poor response to R-CHOP, while OS in ABC-DLBCL with low BTK expression was similar to GCB-DLBCL subtype (p=0.004). High LYN expression coupled with a poor OS for ABC-DLBCL as well as GCB-DLBCL subtypes (p=0.001). Furthermore, high coexpression of BTK/LYN (BTKhigh/LYNhigh) showed poor OS (p=0.019), which linked with upregulation of several genes associated with BCR repertoire and nuclear factor-kappa B pathway (p<0.01). In multivariate analysis, high BTK and LYN expression retained prognostic significance against established clinical predictive factors such as age, International Prognostic Index and COO (p<0.05).

    CONCLUSIONS: Our data provide a clear association between high BCR activity in DLBCL and response to therapy in a distinct population. Molecular data provided here will pave the pathway for the provision of promising novel-targeted therapies to patients with DLBCL in Southeast Asia.

    Matched MeSH terms: Signal Transduction/drug effects
  10. Ahmad Hidayat AF, Chan CK, Mohamad J, Abdul Kadir H
    Biomed Pharmacother, 2018 Aug;104:806-816.
    PMID: 29860114 DOI: 10.1016/j.biopha.2018.05.073
    Dioscorea bulbifera, also known as air potato, has been cultivated as food crop mainly in tropical countries in Asia and Australia. The tubers are edible and have often been used in Traditional Chinese Medicine (TCM) and Ayurvedic medicine to treat cancer, diabetes, thyroid disease, and inflammation. This study aimed to investigate the effects of D. bulbifera on HCT116 human colorectal carcinoma cells and to unravel the plausible mechanisms underlying its apoptotic effects. The ethanol crude and fractions (hexane, ethyl acetate and water) of D. bulbifera were subjected to cell viability MTT assay against various cancer cell lines. The lowest IC50 of the extract and fractions on selected cancer cells were selected for further apoptosis assay and western blot analysis. HCT116 cancer cells were treated with D. bulbifera and stained with Annexin/PI or Hoechst 33342/PI for preliminary confirmation of apoptosis. The dissipation of mitochondria membrane potential (MMP) was determined by flow cytometry. The protein expressions of apoptosis-related proteins such as Bcl-2 family, caspases, Fas, PARP, ERK1/2 and JNK were detected by western blot analysis. Moreover, the HCT116 cells were treated with UO126 and SP600125 inhibitors to verify the involvement of ERK1/2 and JNK protein expressions in inducing apoptotic cell death. Based on the result, D. bulbifera ethyl acetate fraction (DBEAF) exhibited the most compelling cytotoxicity on HCT116 cells with an IC50 of 37.91 ± 1.30 µg/mL. The induction of apoptosis was confirmed by phosphatidylserine externalization and chromatin condensation. Depolarization of MMP further conferred the induction of apoptosis was through the regulation of Bcl-2 family proteins. Activation of caspase cascades (caspase-3, -9, -8 and -10) was elicited followed by the observation of cleaved PARP accumulation in DBEAF-treated cells. Furthermore, death receptor, Fas was activated upon exposure to DBEAF. Collective apoptotic evidences suggested the involvement of intrinsic and extrinsic pathways by DBEAF in HCT116 cells. Interestingly, the attenuation of ERK1/2 phosphorylation accompanied by the activation of JNK was detected in DBEAF-treated cells. In conclusion, the findings revealed that DBEAF induced apoptosis through intrinsic and extrinsic pathways involving ERK1/2 and JNK.
    Matched MeSH terms: Signal Transduction/drug effects*
  11. Break MKB, Hossan MS, Khoo Y, Qazzaz ME, Al-Hayali MZK, Chow SC, et al.
    Fitoterapia, 2018 Mar;125:161-173.
    PMID: 29355749 DOI: 10.1016/j.fitote.2018.01.006
    Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2μM and 0.7μM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.
    Matched MeSH terms: Signal Transduction/drug effects*
  12. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Signal Transduction/drug effects
  13. Liew CY, Lam KW, Kim MK, Harith HH, Tham CL, Cheah YK, et al.
    Int Immunopharmacol, 2011 Jan;11(1):85-95.
    PMID: 21035434 DOI: 10.1016/j.intimp.2010.10.011
    We previously showed that 3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l)propenone (HMP), suppressed the synthesis of various proinflammatory mediators. In this study, HMP showed a dose-dependent inhibition of NO synthesis in the RAW 264.7 murine macrophage line. The inhibition of NO synthesis was related to inhibition of p38 phosphorylation and kinase activity that led to significant inhibition of phosphorylation of ATF-2. This effect in turn caused inhibition of AP-1-DNA binding which partially explains the inhibitory effect upon the synthesis of iNOS. HMP had no effect upon phosphorylation of JNK, ERK1/2 and STAT-1. Kinase activity of JNK and ERK1/2 was also not affected by HMP as determined by levels of phosphorylated c-jun and phosphorylated elk-1. Furthermore HMP failed to block phosphorylation of IκBα, and subsequent nuclear translocation and DNA-binding activity of p65 NF-κB in IFN-γ/LPS-induced RAW 264.7 cells. Molecular docking experiments confirmed that HMP fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We conclude that the synthetic HMP is a chalcone analogue that selectively inhibits the p38/ATF-2 and AP-1 signaling pathways in the NO synthesis by the macrophage RAW 264.7.
    Matched MeSH terms: Signal Transduction/drug effects*
  14. Erejuwa OO, Sulaiman SA, Wahab MS
    Molecules, 2014;19(2):2497-522.
    PMID: 24566317 DOI: 10.3390/molecules19022497
    Honey is a natural product known for its varied biological or pharmacological activities-ranging from anti-inflammatory, antioxidant, antibacterial, antihypertensive to hypoglycemic effects. This review article focuses on the role of honey in modulating the development and progression of tumors or cancers. It reviews available evidence (some of which is very recent) with regards to the antimetastatic, antiproliferative and anticancer effects of honey in various forms of cancer. These effects of honey have been thoroughly investigated in certain cancers such as breast, liver and colorectal cancer cell lines. In contrast, limited but promising data are available for other forms of cancers including prostate, bladder, endometrial, kidney, skin, cervical, oral and bone cancer cells. The article also underscores the various possible mechanisms by which honey may inhibit growth and proliferation of tumors or cancers. These include regulation of cell cycle, activation of mitochondrial pathway, induction of mitochondrial outer membrane permeabilization, induction of apoptosis, modulation of oxidative stress, amelioration of inflammation, modulation of insulin signaling and inhibition of angiogenesis. Honey is highly cytotoxic against tumor or cancer cells while it is non-cytotoxic to normal cells. The data indicate that honey can inhibit carcinogenesis by modulating the molecular processes of initiation, promotion, and progression stages. Thus, it may serve as a potential and promising anticancer agent which warrants further experimental and clinical studies.
    Matched MeSH terms: Signal Transduction/drug effects
  15. Zakaria ZA, Hassan MH, Nurul Aqmar MN, Abd Ghani M, Mohd Zaid SN, Sulaiman MR, et al.
    Methods Find Exp Clin Pharmacol, 2007 Oct;29(8):515-20.
    PMID: 18040526
    This study was carried out in mice to determine the nonopioid receptor signaling pathway(s) that might modulate the antinociceptive activity of the aqueous and chloroform extracts of Muntingia calabura (M. calabura) leaves, using the hot-plate test. The leaves of M. calabura were sequentially soaked [1:2 (w/v); 72 h] in distilled water (dH(2)O) and chloroform. The 50% concentration extracts were selected for this study based on the plant's previously established antinociceptive profiles. The mice (n = 7) were pretreated (s.c.) for 10 min with the selected nonopioid receptor antagonists, followed by the (s.c.) administration of the respective extract. The latency of discomfort was recorded at the interval time of 0.5, 1, 2, 3, 4 and 5 h after the extract administration. The 5 mg/kg atropine, 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol, 1 mg/kg haloperidol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the aqueous extract-induced antinociceptive activity. The 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the chloroform extract-induced antinociceptive activity. In conclusion, the central antinociceptive activity of M. calabura leaves appears to be involved in the modulation of various nonopioid receptor signaling pathways. Its aqueous extract antinociceptive activity is mediated via modulation of the muscarinic, alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic, dopaminergic and GABAergic receptors, while its chloroform extract activity is mediated via modulation of the alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic and GABAergic receptors.
    Matched MeSH terms: Signal Transduction/drug effects
  16. Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K
    Biomed Pharmacother, 2018 Oct;106:707-713.
    PMID: 29990862 DOI: 10.1016/j.biopha.2018.06.136
    Psoriasis is a chronic autoimmune skin disorder affecting 2-3% of the world population. It has characteristic features such as increased keratinocyte proliferation and production of inflammatory mediators. The treatment involves various strategies including topical, systemic, phototherapy and biologics. Topical therapies are preferred for mild to moderate psoriasis conditions over the systemic therapies which are ideal in severe disease conditions. The systemic therapies include immunosuppressants, biological agents and recently approved phosphodiesterase-4 (PDE4) inhibitors. There are various limitations associated with the existing therapies where the new findings in the pathogenesis of psoriasis are paving a path for newer therapeutics to target at the molecular level. Various small molecules, PDE-4 inhibitors, biologics, and immunomodulator proved efficacious including the new molecules targeting Janus kinases (JAK) inhibitors that are under investigation. Furthermore, the role of genetic and miRNAs in psoriasis is still not completely explored and may further help in improving the treatment efficacy. This review provides an insight into various emerging therapies along with currently approved treatments for psoriasis.
    Matched MeSH terms: Signal Transduction/drug effects
  17. Lau YS, Ling WC, Murugan D, Kwan CY, Mustafa MR
    Nutrients, 2015 Jul;7(7):5239-53.
    PMID: 26133970 DOI: 10.3390/nu7075220
    Botanical herbs are consumed globally not only as an essential diet but also as medicines or as functional/recreational food supplements. The extract of the Apocynum venetum leaves (AVLE), also known as Luobuma, exerts its antihypertensive effect via dilating the blood vessels in an endothelium- and concentration-dependent manner with optimal effect seen at as low as 10 µg/mL. A commercial Luoboma "antihypertensive tea" is available commercially in the western province of China. The present study seeks to investigate the underlying cellular mechanisms of the nitric oxide (NO)-releasing property of AVLE in rat aortas and human umbilical vein endothelial cells (HUVECs). Endothelium-dependent relaxation induced by AVLE was assessed in organ chambers in the presence or absence of polyethyleneglycol catalase (PP2, 20 µM; inhibitor of Src kinase), wortmannin (30 nM) and LY294002 (20 µM; PI3 (phosphatidylinositol3)-Kinase inhibitor), N(G)-nitro-L-arginine (L-NAME, 100 µM; endothelial NO synthase inhibitor (eNOS)) and ODQ (1 µM; soluble guanylyl cyclase inhibitor). Total nitrite and nitrate (NOx) level and protein expression of p-Akt and p-eNOS were measured. AVLE-induced endothelium-dependent relaxation was reduced by PP2, wortmannin and LY294002 and abolished by L-NAME and ODQ. AVLE significantly increased total NOx level in rat aortas and in HUVECs compared to control. It also instigated phosphorylation of Akt and eNOS in cultured HUVECs in a concentration-dependent manner and this was markedly suppressed by PP2, wortmannin and LY294002. AVLE also inhibited superoxide generated from both NADPH oxidase and xanthine/xanthine oxidase system. Taken together, AVLE causes endothelium-dependent NO mediated relaxations of rat aortas through Src/PI3K/Akt dependent NO signalling pathway and possesses superoxide scavenging activity.
    Matched MeSH terms: Signal Transduction/drug effects*
  18. Kuan CS, Yee YH, See Too WC, Few LL
    PLoS One, 2014;9(12):e113485.
    PMID: 25490397 DOI: 10.1371/journal.pone.0113485
    Choline kinase is the most upstream enzyme in the CDP-choline pathway. It catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP and Mg2+ during the biosynthesis of phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase (CK) is encoded by two separate genes, ckα and ckβ, which produce three isoforms, CKα1, CKα2, and CKβ. Previous studies have associated ckβ with muscle development; however, the molecular mechanism underlying the transcriptional regulation of ckβ has never been elucidated.
    Matched MeSH terms: Signal Transduction/drug effects*
  19. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

    Matched MeSH terms: Signal Transduction/drug effects
  20. Hajjouli S, Chateauvieux S, Teiten MH, Orlikova B, Schumacher M, Dicato M, et al.
    Molecules, 2014 Sep 16;19(9):14649-66.
    PMID: 25230121 DOI: 10.3390/molecules190914649
    Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK) signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.
    Matched MeSH terms: Signal Transduction/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links