Displaying publications 61 - 80 of 754 in total

Abstract:
Sort:
  1. Vanrenterghem, Jos, Zulezwan A. Malik, G. Burniston, Jatin
    MyJurnal
    Journal of Sports Science and Physical Education 5(2): 9-14, 2016 - Jump squat tests can be
    used to investigate the differences in the force - velocity (f-v) profile in movement that is
    more a sport-specific than isolated exercises such as open chain leg extension. However,
    squat jumps involve multi-joint movement, making it questionable which muscle is the main
    contributor for the movement. The main aim of this study is to develop a test of isolated knee
    extension that encompasses the entire range of human f-v relationship and to investigate the
    correlation between linear encoder and kinematic measurement of angular velocity using a
    camera system during unloaded kicking. One healthy male subject volunteered to participate
    in the study and performed 10 unloaded kicks (knee extension). A cuff was strapped around
    the lower leg, approximately 2 cm above the medial malleoli and connected to a linear
    velocity encoder (MuscleLab Ergotest version 4010, Norway). During the test sessions, threedimensional
    motion analysis was performed with an Oqus Motion Capture System (Qualisys,
    Sweden). Data were transferred to Windows-based data acquisition software (Qualisys Track
    Manager). There was a positive linear relationship (r = 0.94). The unloaded kicking test to
    determine maximum angular velocity at knee extension measured using the QTM showed
    that the mean angular velocity was 362˚.s-1, with the highest value being 528˚.s-1. This
    preliminary study suggests isokinetic dynamometry (IKD) can be used to investigate the
    entire range of velocities (i.e isometric – velocity maximum) of knee extension in normal
    human subjects. Further studies can examine the use of IKD in measuring higher velocities.
    Matched MeSH terms: Software
  2. Vanitha Krishnan, Hazreen Abdul Majid, Rafdzah Ahmad Zaki, Muhammad Yazid Jalaludin
    MyJurnal
    Introduction: Anaemia is a significant public health problem among adolescents globally but there is limited data in many countries, including Malaysia. This study aims to investigate the 5-years incidence of anemia among Malaysian adolescents by gender, ethnicity, locality of schools, Body Mass Index, stature and diet intake. Methods: A secondary analysis of existing data from MyHeART study was conducted within a closed cohort of 528 adolescents (aged 13 years) attended 15 public secondary schools from Kuala Lumpur, Selangor and Perak. The adolescents who were followed up at 15 and 17 years old had completed haemoglobin assessment, anthropometric measurements and -days diet history. The data was cleaned and missingness was handled accordingly with multiple imputation. SPSS Software version 21 was used to analyse the data, with Generalised Estimating Equation (GEE) showing the effect of time on the trajectory of prevalence of anaemia over the 5 years. Results: The prevalence or incidence? of anaemia in 2012, 2014 and 2016 was 7.9% (95%CI: 5.0-12.3), 13.9% (95%CI: 10.0-19.0) and 15.8% (95%CI:11.3-21.7). In females, anaemia increased from 11.1% (95%CI:6.7-18.7) to 15.7% (11.4-21.3) and 23.1%(95%CI: 16.8-31.0); the change was significant from 13 to 15 years old. Similar trend was noticed in those who are stunted, overweight/obese, in both urban/rural schools and didn’t meet their daily recommended nutrient intake for total calorie, protein and iron. Conclusion: Anaemia is increasing in trend among the adolescents over the years and deems attention from the relevant stakeholders to create a robust anemia prevention program.
    Matched MeSH terms: Software
  3. Vadla, Pradeep Kumar, Kolla, Bhanu Prakash, Perumal, Thinagaran
    MyJurnal
    Cloud Computing provides a solution to enterprise applications in resolving their services at all level of Software, Platform, and Infrastructure. The current demand of resources for large enterprises and their specific requirement to solve critical issues of services to their clients like avoiding resources contention, vendor lock-in problems and achieving high QoS (Quality of Service) made them move towards the federated cloud. The reliability of the cloud has become a challenge for cloud providers to provide resources at an instance request satisfying all SLA (Service Level Agreement) requirements for different consumer applications. To have better collation among cloud providers, FLA (Federated Level Agreement) are given much importance to get consensus in terms of various KPI’s (Key Performance Indicator’s) of the individual cloud providers. This paper proposes an FLASLA Aware Cloud Collation Formation algorithm (FS-ACCF) considering both FLA and SLA as major features affecting the collation formation to satisfy consumer request instantly. In FS-ACCF algorithm, fuzzy preference relationship multi-decision approach was used to validate the preferences among cloud providers for forming collation and gaining maximum profit. Finally, the results of FS-ACCF were compared with S-ACCF (SLA Aware Collation Formation) algorithm for 6 to 10 consecutive requests of cloud consumers with varied VM configurations for different SLA parameters like response time, process time and availability.
    Matched MeSH terms: Software
  4. Ullah MA, Islam MT, Alam T, Ashraf FB
    Sensors (Basel), 2018 Dec 01;18(12).
    PMID: 30513719 DOI: 10.3390/s18124214
    This paper demonstrates the performance of a potential design of a paper substrate-based flexible antenna for intrabody telemedicine systems in the 2.4 GHz industrial, scientific, and medical radio (ISM) bands. The antenna was fabricated using 0.54 mm thick flexible photo paper and 0.03 mm copper strips as radiating elements. Design and performance analyses of the antenna were performed using Computer Simulation Technology (CST) Microwave Studio software. The antenna performances were investigated based on the reflection coefficient in normal and bent conditions. The total dimensions of the proposed antenna are 40 × 35 × 0.6 mm³. The antenna operates at 2.33⁻2.53 GHz in the normal condition. More than an 8% fractional bandwidth is expressed by the antenna. Computational analysis was performed at different flexible curvatures by bending the antenna. The minimum fractional bandwidth deviation is 5.04% and the maximum is 24.97%. Moreover, it was mounted on a homogeneous phantom muscle and a four-layer human tissue phantom. Up to a 70% radiation efficiency with a 2 dB gain was achieved by the antenna. Finally, the performance of the antenna with a homogeneous phantom muscle was measured and found reliable for wearable telemedicine applications.
    Matched MeSH terms: Software
  5. Uesaki M, Ashida H, Kitaoka A, Pasqualotto A
    Sci Rep, 2019 10 08;9(1):14440.
    PMID: 31595003 DOI: 10.1038/s41598-019-50912-8
    Changes in the retinal size of stationary objects provide a cue to the observer's motion in the environment: Increases indicate the observer's forward motion, and decreases backward motion. In this study, a series of images each comprising a pair of pine-tree figures were translated into auditory modality using sensory substitution software. Resulting auditory stimuli were presented in an ascending sequence (i.e. increasing in intensity and bandwidth compatible with forward motion), descending sequence (i.e. decreasing in intensity and bandwidth compatible with backward motion), or in a scrambled order. During the presentation of stimuli, blindfolded participants estimated the lengths of wooden sticks by haptics. Results showed that those exposed to the stimuli compatible with forward motion underestimated the lengths of the sticks. This consistent underestimation may share some aspects with visual size-contrast effects such as the Ebbinghaus illusion. In contrast, participants in the other two conditions did not show such magnitude of error in size estimation; which is consistent with the "adaptive perceptual bias" towards acoustic increases in intensity and bandwidth. In sum, we report a novel cross-modal size-contrast illusion, which reveals that auditory motion cues compatible with listeners' forward motion modulate haptic representations of object size.
    Matched MeSH terms: Software
  6. Udin, W. S., Ahmad, A., Ismail, Z.
    MyJurnal
    In recent years image acquisition in close range photogrammetry relies on digital sensors such as digital cameras, video cameras, CCD cameras etc that are not specifically designed for photogrammetry. This study is performed to evaluate the compatibility of the digital metric camera and non-metric camera for the purpose of mapping meandering flume, using close range photogrammetric technique and further, to determine the accuracy that could be achieved using such a technique. The meandering flume provides an opportunity to conduct an experimental study in a controlled environment. In this study, the digital images of the whole meandering flume were acquired using a compact digital camera - Nikon Coolpix S560, a Single Lens Reflex (SLR) Nikon D60 and also a metric digital camera Rollei D30. A series of digital images were acquired to cover the whole meandering flume. Secondary data of ground control points (GCP) and check points (CP), established using the Total Station technique, was used. The digital camera was calibrated and the recovered camera calibration parameters were then used in the processing of digital images. In processing the digital images, digital photogrammetric software was used for processes such as aerial triangulation, stereo compilation, generation of digital elevation model (DEM) and generation of orthophoto. The whole process was successfully performed and the output produced in the form of orthophoto. The research output is then evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the analysis, sub-meter accuracy is obtained. It can be concluded that the differences between the different types of digital camera are small . As a conclusion, this study proves that close range photogrammetry technique can be used for mapping meandering flume using both the metric digital camera and non-metric digital camera.
    Matched MeSH terms: Software
  7. Tsai WS, Shih SL, Green SK, Jan FJ
    Plant Dis, 2007 Jul;91(7):907.
    PMID: 30780410 DOI: 10.1094/PDIS-91-7-0907A
    Whitefly-transmitted, cucurbit-infecting begomoviruses (genus Begomovirus, family Geminiviridae) have been detected on cucurbit crops in Bangladesh, China, Egypt, Israel, Malaysia, Mexico, the Philippines, Thailand, United States, and Vietnam. Pumpkin plants showing leaf curling, blistering, and yellowing symptoms were observed in the AVRDC fields (Tainan, Taiwan) during 2001 and in nearby farmers' fields during 2005. Two samples from symptomatic plants were collected in 2001 and six collected in 2005. Viral DNAs were extracted (2), and the PCR, with previously described primers, was used to detect the presence of begomoviral DNA-A (4), DNA-B (3), and associated satellite DNA (1). Begomoviral DNA-A was detected in one of the 2001 samples and in all 2005 samples. The PCR-amplified 1.5 kb viral DNA-A from one positive sample each from the 2001 and 2005 collections was cloned and sequenced. On the basis of the 1.5-kb DNA-A sequences, specific primers were designed to completely sequence the DNA-A component. The overlap between fragments obtained using primer walking ranged from 43 to 119 bp with 100% nt identities. The complete DNA-A sequences were determined for the two isolates as 2,734 bp (2001) (GenBank Accession No. DQ866135) and 2,733 bp (2005) (GenBank Accession No. EF199774). Sequence comparisons and analyses were performed using the DNAMAN Sequence Analysis Software (Lynnon Corporation, Vaudreuil, Quebec, Canada). The DNA-A of the begomovirus isolates each contained the conserved nanosequence-TAATATTAC and six open reading frames, including two in the virus sense and four in the complementary sense. On the basis of a 99% shared nucleotide sequence identity, they are considered isolates of the same species. BLASTn analysis and a comparison of the sequence with others available in the GenBank database ( http://www.ncbi.nlm.nih.gov ) indicated that the Taiwan virus shared its highest nt identity (more than 95%) with the Squash leaf curl Philippines virus (GenBank Accession No. AB085793). Virus-associated satellite DNA was not found in any of the samples. DNA-B was found in both samples, providing further evidence that the virus was the same as the bipartite Squash leaf curl Philippines virus. To our knowledge, this is the first report of Squash leaf curl Philippines virus in Taiwan. References: (1) R. W. Briddon et al. Virology 312:106, 2003. (2) R. L. Gilbertson et al. J. Gen. Virol. 72:2843, 1991. (3) S. K. Green et al. Plant Dis. 85:1286, 2001. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.
    Matched MeSH terms: Software
  8. Too CW, Fong KY, Hang G, Sato T, Nyam CQ, Leong SH, et al.
    J Vasc Interv Radiol, 2024 May;35(5):780-789.e1.
    PMID: 38355040 DOI: 10.1016/j.jvir.2024.02.006
    PURPOSE: To validate the sensitivity and specificity of a 3-dimensional (3D) convolutional neural network (CNN) artificial intelligence (AI) software for lung lesion detection and to establish concordance between AI-generated needle paths and those used in actual biopsy procedures.

    MATERIALS AND METHODS: This was a retrospective study using computed tomography (CT) scans from 3 hospitals. Inclusion criteria were scans with 1-5 nodules of diameter ≥5 mm; exclusion criteria were poor-quality scans or those with nodules measuring <5mm in diameter. In the lesion detection phase, 2,147 nodules from 219 scans were used to develop and train the deep learning 3D-CNN to detect lesions. The 3D-CNN was validated with 235 scans (354 lesions) for sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) analysis. In the path planning phase, Bayesian optimization was used to propose possible needle trajectories for lesion biopsy while avoiding vital structures. Software-proposed needle trajectories were compared with actual biopsy path trajectories from intraprocedural CT scans in 150 patients, with a match defined as an angular deviation of <5° between the 2 trajectories.

    RESULTS: The model achieved an overall AUC of 97.4% (95% CI, 96.3%-98.2%) for lesion detection, with mean sensitivity of 93.5% and mean specificity of 93.2%. Among the software-proposed needle trajectories, 85.3% were feasible, with 82% matching actual paths and similar performance between supine and prone/oblique patient orientations (P = .311). The mean angular deviation between matching trajectories was 2.30° (SD ± 1.22); the mean path deviation was 2.94 mm (SD ± 1.60).

    CONCLUSIONS: Segmentation, lesion detection, and path planning for CT-guided lung biopsy using an AI-guided software showed promising results. Future integration with automated robotic systems may pave the way toward fully automated biopsy procedures.

    Matched MeSH terms: Software*
  9. Tisa F, Davoody M, Abdul Raman AA, Daud WM
    PLoS One, 2015;10(4):e0119933.
    PMID: 25849556 DOI: 10.1371/journal.pone.0119933
    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2Phenol = 0.9214 and R2TOC= 0.9082).
    Matched MeSH terms: Software
  10. Tiong KH, Chang JK, Pathmanathan D, Hidayatullah Fadlullah MZ, Yee PS, Liew CS, et al.
    Biotechniques, 2018 12;65(6):322-330.
    PMID: 30477327 DOI: 10.2144/btn-2018-0072
    We describe a novel automated cell detection and counting software, QuickCount® (QC), designed for rapid quantification of cells. The Bland-Altman plot and intraclass correlation coefficient (ICC) analyses demonstrated strong agreement between cell counts from QC to manual counts (mean and SD: -3.3 ± 4.5; ICC = 0.95). QC has higher recall in comparison to ImageJauto, CellProfiler and CellC and the precision of QC, ImageJauto, CellProfiler and CellC are high and comparable. QC can precisely delineate and count single cells from images of different cell densities with precision and recall above 0.9. QC is unique as it is equipped with real-time preview while optimizing the parameters for accurate cell count and needs minimum hands-on time where hundreds of images can be analyzed automatically in a matter of milliseconds. In conclusion, QC offers a rapid, accurate and versatile solution for large-scale cell quantification and addresses the challenges often faced in cell biology research.
    Matched MeSH terms: Software*
  11. Tilley A, Dos Reis Lopes J, Wilkinson SP
    PLoS One, 2020;15(11):e0234760.
    PMID: 33186386 DOI: 10.1371/journal.pone.0234760
    Small-scale fisheries are responsible for landing half of the world's fish catch, yet there are very sparse data on these fishing activities and associated fisheries production in time and space. Fisheries-dependent data underpin scientific guidance of management and conservation of fisheries systems, but it is inherently difficult to generate robust and comprehensive data for small-scale fisheries, particularly given their dispersed and diverse nature. In tackling this challenge, we use open source software components including the Shiny R package to build PeskAAS; an adaptable and scalable digital application that enables the collation, classification, analysis and visualisation of small-scale fisheries catch and effort data. We piloted and refined this system in Timor-Leste; a small island developing nation. The features that make PeskAAS fit for purpose are that it is: (i) fully open-source and free to use (ii) component-based, flexible and able to integrate vessel tracking data with catch records; (iii) able to perform spatial and temporal filtering of fishing productivity by fishing method and habitat; (iv) integrated with species-specific length-weight parameters from FishBase; (v) controlled through a click-button dashboard, that was co-designed with fisheries scientists and government managers, that enables easy to read data summaries and interpretation of context-specific fisheries data. With limited training and code adaptation, the PeskAAS workflow has been used as a framework on which to build and adapt systematic, standardised data collection for small-scale fisheries in other contexts. Automated analytics of these data can provide fishers, managers and researchers with insights into a fisher's experience of fishing efforts, fisheries status, catch rates, economic efficiency and geographic preferences and limits that can potentially guide management and livelihood investments.
    Matched MeSH terms: Software
  12. Tey SN, Syed Mohamed AMF, Marizan Nor M
    J Forensic Sci, 2024 Jan;69(1):189-198.
    PMID: 37706423 DOI: 10.1111/1556-4029.15380
    Recent advances in imaging technologies, such as intra-oral surface scanning, have rapidly generated large datasets of high-resolution three-dimensional (3D) sample reconstructions. These datasets contain a wealth of phenotypic information that can provide an understanding of morphological variation and evolution. The geometric morphometric method (GMM) with landmarks and the development of sliding and surface semilandmark techniques has greatly enhanced the quantification of shape. This study aimed to determine whether there are significant differences in 3D palatal rugae shape between siblings. Digital casts representing 25 pairs of full siblings from each group, male-male (MM), female-female (FF), and female-male (FM), were digitized and transferred to a GM system. The palatal rugae were determined, quantified, and visualized using GMM computational tools with MorphoJ software (University of Manchester). Principal component analysis (PCA) and canonical variates analysis (CVA) were employed to analyze palatal rugae shape variability and distinguish between sibling groups based on shape. Additionally, regression analysis examined the potential impact of shape on palatal rugae. The study revealed that the palatal rugae shape covered the first nine of the PCA by 71.3%. In addition, the size of the palatal rugae has a negligible impact on its shape. Whilst palatal rugae are known for their individuality, it is noteworthy that three palatal rugae (right first, right second, and left third) can differentiate sibling groups, which may be attributed to genetics. Therefore, it is suggested that palatal rugae morphology can serve as forensic identification for siblings.
    Matched MeSH terms: Software
  13. Tey HJ, Ng CH
    PeerJ, 2019;7:e7667.
    PMID: 31592138 DOI: 10.7717/peerj.7667
    Background: From genome wide association studies on Alzheimer's disease (AD), it has been shown that many single nucleotide polymorphisms (SNPs) of genes of different pathways affect the disease risk. One of the pathways is endocytosis, and variants in these genes may affect their functions in amyloid precursor protein (APP) trafficking, amyloid-beta (Aβ) production as well as its clearance in the brain. This study uses computational methods to predict the effect of novel SNPs, including untranslated region (UTR) variants, splice site variants, synonymous SNPs (sSNPs) and non-synonymous SNPs (nsSNPs) in three endocytosis genes associated with AD, namely PICALM, SYNJ1 and SH3KBP1.

    Materials and Methods: All the variants' information was retrieved from the Ensembl genome database, and then different variation prediction analyses were performed. UTRScan was used to predict UTR variants while MaxEntScan was used to predict splice site variants. Meta-analysis by PredictSNP2 was used to predict sSNPs. Parallel prediction analyses by five different software packages including SIFT, PolyPhen-2, Mutation Assessor, I-Mutant2.0 and SNPs&GO were used to predict the effects of nsSNPs. The level of evolutionary conservation of deleterious nsSNPs was further analyzed using ConSurf server. Mutant protein structures of deleterious nsSNPs were modelled and refined using SPARKS-X and ModRefiner for structural comparison.

    Results: A total of 56 deleterious variants were identified in this study, including 12 UTR variants, 18 splice site variants, eight sSNPs and 18 nsSNPs. Among these 56 deleterious variants, seven variants were also identified in the Alzheimer's Disease Sequencing Project (ADSP), Alzheimer's Disease Neuroimaging Initiative (ADNI) and Mount Sinai Brain Bank (MSBB) studies.

    Discussion: The 56 deleterious variants were predicted to affect the regulation of gene expression, or have functional impacts on these three endocytosis genes and their gene products. The deleterious variants in these genes are expected to affect their cellular function in endocytosis and may be implicated in the pathogenesis of AD as well. The biological consequences of these deleterious variants and their potential impacts on the disease risks could be further validated experimentally and may be useful for gene-disease association study.

    Matched MeSH terms: Software
  14. Teoh WL, Khoo MB, Teh SY
    PLoS One, 2013;8(7):e68580.
    PMID: 23935873 DOI: 10.1371/journal.pone.0068580
    Designs of the double sampling (DS) X chart are traditionally based on the average run length (ARL) criterion. However, the shape of the run length distribution changes with the process mean shifts, ranging from highly skewed when the process is in-control to almost symmetric when the mean shift is large. Therefore, we show that the ARL is a complicated performance measure and that the median run length (MRL) is a more meaningful measure to depend on. This is because the MRL provides an intuitive and a fair representation of the central tendency, especially for the rightly skewed run length distribution. Since the DS X chart can effectively reduce the sample size without reducing the statistical efficiency, this paper proposes two optimal designs of the MRL-based DS X chart, for minimizing (i) the in-control average sample size (ASS) and (ii) both the in-control and out-of-control ASSs. Comparisons with the optimal MRL-based EWMA X and Shewhart X charts demonstrate the superiority of the proposed optimal MRL-based DS X chart, as the latter requires a smaller sample size on the average while maintaining the same detection speed as the two former charts. An example involving the added potassium sorbate in a yoghurt manufacturing process is used to illustrate the effectiveness of the proposed MRL-based DS X chart in reducing the sample size needed.
    Matched MeSH terms: Software*
  15. Teo Chuun, B., Dian Darina Indah, D., Darliana, M.
    MyJurnal
    This study is aimed at seat design optimization for high-speed train based on the Malaysians sitting anthropometry
    data focusing on seat fit parameters. An analysis of anthropometry data composed of 15 dimensions that are
    required in seat design was done with 50 male subjects. These data were collected through direct measuring
    methods with standard equipment. According to the Malaysian automotive seat fit parameters, the backrest width,
    backrest height, cushion width, and cushion length were established based on these anthropometric dimensions:
    interscye breadth (5th percentile female and 95th percentile male), hip breadth (95th percentile female), sitting
    shoulder height (5th percentile female), and buttock-popliteal length (5th percentile female), respectively. This
    study uses the CATIA software to design and analyse the proposed seat design. The fit parameters proposed for the
    new design are seat height, 380mm; cushion width, 450mm; backrest width, 450mm and backrest height, 850mm.
    The CATIA human activity analysis (based on Rapid Upper Limb Analysis, RULA) was also executed. From the study,
    the new conceptual seat design gives the most optimized fit when compared to the current seat.
    Matched MeSH terms: Software
  16. Teo BG, Sarinder KK, Lim LH
    Trop Biomed, 2010 Aug;27(2):254-64.
    PMID: 20962723 MyJurnal
    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms.
    Matched MeSH terms: Software*
  17. Teo BG, Dhillon SK
    BMC Bioinformatics, 2019 Dec 24;20(Suppl 19):658.
    PMID: 31870297 DOI: 10.1186/s12859-019-3210-x
    BACKGROUND: Studying structural and functional morphology of small organisms such as monogenean, is difficult due to the lack of visualization in three dimensions. One possible way to resolve this visualization issue is to create digital 3D models which may aid researchers in studying morphology and function of the monogenean. However, the development of 3D models is a tedious procedure as one will have to repeat an entire complicated modelling process for every new target 3D shape using a comprehensive 3D modelling software. This study was designed to develop an alternative 3D modelling approach to build 3D models of monogenean anchors, which can be used to understand these morphological structures in three dimensions. This alternative 3D modelling approach is aimed to avoid repeating the tedious modelling procedure for every single target 3D model from scratch.

    RESULT: An automated 3D modeling pipeline empowered by an Artificial Neural Network (ANN) was developed. This automated 3D modelling pipeline enables automated deformation of a generic 3D model of monogenean anchor into another target 3D anchor. The 3D modelling pipeline empowered by ANN has managed to automate the generation of the 8 target 3D models (representing 8 species: Dactylogyrus primaries, Pellucidhaptor merus, Dactylogyrus falcatus, Dactylogyrus vastator, Dactylogyrus pterocleidus, Dactylogyrus falciunguis, Chauhanellus auriculatum and Chauhanellus caelatus) of monogenean anchor from the respective 2D illustrations input without repeating the tedious modelling procedure.

    CONCLUSIONS: Despite some constraints and limitation, the automated 3D modelling pipeline developed in this study has demonstrated a working idea of application of machine learning approach in a 3D modelling work. This study has not only developed an automated 3D modelling pipeline but also has demonstrated a cross-disciplinary research design that integrates machine learning into a specific domain of study such as 3D modelling of the biological structures.

    Matched MeSH terms: Software
  18. Teng CL, Zuhanariah MN, Ng CS, Goh CC
    Med J Malaysia, 2014 Aug;69 Suppl A:4-7.
    PMID: 25417946
    This article describes the methodology of this bibliography. A search was conducted on the following: (1) bibliographic databases (PubMed, Scopus, and other databases) using search terms that maximize the retrieval of Malaysian publications; (2) Individual journal search of Malaysian healthrelated journals; (3) A targeted search of Google and Google Scholar; (4) Searching of Malaysian institutional repositories; (5) Searching of Ministry of Health and Clinical Research Centre website. The publication years were limited to 2000- 2013. The citations were imported or manually entered into bibliographic software Refworks. After removing duplicates, and correcting data entry errors, PubMed's Medical Subject Headings (MeSH terms) were added. Clinical research is coded using the definition "patient-oriented-research or research conducted with human subjects (or on material of human origin) for which the investigator directly interacts with the human subjects at some point during the study." A bibliography of citations [n=2056] that fit the criteria of clinical research in Malaysia in selected topics within five domains was generated: Cancers [589], Cardiovascular diseases [432], Infections [795], Injuries [142], and Mental Health [582]. This is done by retrieving citations with the appropriate MESH terms, as follow: For cancers (Breast Neoplasms; Colorectal Neoplasms; Uterine Cervical Neoplasms), for cardiovascular diseases (Coronary Disease; Hypertension; Stroke), for infections (Dengue; Enterovirus Infections, HIV Infections; Malaria; Nipah Virus; Tuberculosis), for injuries (Accidents, Occupational; Accidents, Traffic; Child Abuse; Occupational Injuries), for mental health (Depression; Depressive Disorder; Depressive Disorder, Major; Drug Users; Psychotic Disorders; Suicide; Suicide, Attempted; Suicidal Ideation; Substance- Related Disorders).
    Matched MeSH terms: Software
  19. Teh LC, Prema M, Choy MP, Letchuman GR
    Med J Malaysia, 2017 02;72(1):26-31.
    PMID: 28255136 MyJurnal
    INTRODUCTION: Specialists constitute a major 'driving force' and catalyst for growth of research in their speciality. A clearer understanding is required as to what motivates their participation in research as well as the barriers they faced. This research aims to study the attitudes, barriers and facilitators faced by specialists and to identify strategies to promote and sustain research activities in their hospitals.

    METHODOLOGY: A cross-sectional survey using selfadministered questionnaires was conducted among all specialists working in government specialist hospitals in the northern states of Malaysia.

    RESULTS: Out of 733 questionnaires distributed, 467 were returned giving a response rate of 63.7%. Ninety-nine percent of the respondents believed that research benefits patients while 93.3% think research helps in their professional development. However, 34.8% think that under their present working conditions, it is unlikely they will participate in research. The major barriers identified were lack of funds for research (81%); lack access to expertise, software or statistical analysis (78.4%); interference with daily work schedule (75.1%) and inconsistent manpower in their department (74.2%). There are three barriers with statistically significant difference between hospitals with CRC compared to hospitals without CRC; lack of funds, mentors and access to expertise, software or statistical analysis. The demographic factors, attitudes and barriers contributing to involvement in research also investigated. The main facilitators for the conduct of research are potential to benefit patients and potential for professional development.

    CONCLUSION: Taking note of the findings, the Ministry of Health can implement appropriate strategies to improve specialist participation in research.

    Matched MeSH terms: Software
  20. Tang WS, Chan MW, Kow FP, Ambigapathy R, Wong JHW, Thiruvengadam V, et al.
    Malays Fam Physician, 2021 Mar 25;16(1):75-83.
    PMID: 33948145 DOI: 10.51866/oa1096
    Background: The low detection rate of tuberculosis (TB) cases in Malaysia remains a challenge in the effort to end TB by 2030. The collaboration between private and public health care facilities is essential in addressing this issue. As of now, no private-public health care collaborative program in pulmonary tuberculosis (PTB) screening exists in Malaysia.

    Aim: To determine the feasibility of a collaborative program between private general practitioners (GPs) and the public primary health clinics in PTB screening and to assess the yield of smear-positive PTB from this program.

    Methods: A prospective cohort study using convenient sampling was conducted involving GPs and public health clinics in the North-East District, Penang, from March 2018 to May 2019. In this study, GPs could direct all suspected PTB patients to perform a sputum acid fast bacilli (AFB) direct smear in any of the dedicated public primary health clinics. The satisfaction level of both the GPs and their patients were assessed using a self-administered client satisfaction questionnaire. IBM SPSS Statistical Software was used to analyze the data.

    Results: Out of a total of 31 patients who underwent the sputum investigation for PTB, one (3.2%) was diagnosed to have smear-positive PTB. Most of the patients (>90%) and GPs (66.7%) agreed to continue with this program in the future. Furthermore, most of the patients (>90%) were satisfied with the program structure.

    Conclusion: It is potentially feasible to involve GPs in combating TB. However, a more structured program addressing the identified issues is needed to make the collaborative program a success.

    Matched MeSH terms: Software
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links