Displaying publications 61 - 80 of 992 in total

Abstract:
Sort:
  1. Shahriman MS, Ramachandran MR, Zain NNM, Mohamad S, Manan NSA, Yaman SM
    Talanta, 2018 Feb 01;178:211-221.
    PMID: 29136814 DOI: 10.1016/j.talanta.2017.09.023
    In this present study, magnetic nanoparticles (MNPs) nanocomposites modified with polyaniline (PANI) coated newly synthesised dicationic ionic liquid (DICAT) forming MNP-PANI-DICAT were successfully synthesised as new generation material for magnetic solid phase extraction (MSPE). MNP-PANI-DICAT was characterised by FT-IR NMR, CHN, BET, SEM, TEM, and VSM techniques and the results were compared with MNP-PANI and native MNP. This new material was applied as a magnetic adsorbent for the pre-concentration and separation of polycyclic aromatic hydrocarbons (PAHs) due to the π-π interaction between polyaniline shell and dicationic ionic liquid (DICAT) with PAHs compounds. Under the optimal conditions, the proposed method was evaluated and applied for the analysis of PAHs in environmental samples using gas chromatography-mass spectrometry (GC-MS). The validation method showed good linearity (0.005-500µgL-1) with the coefficient of determination (R2) > 0.999. The limits of detection (LOD) and quantification (LOQ) of the developed method (MNP-PANI-DICAT-MSPE) were in the range of 0.0008-0.2086µgL-1and 0.0024-0.6320µgL-1, respectively. The enrichment factor (EF) of PAHs on MNP-PANI-DICAT-MSPE were in the range of 7.546-29.632. The extraction recoveries of natural water, sludge, and soil samples were ranged from 80.2% to 111.9% with relative standard deviation (RSD) less than 5.6%. The newly synthesised MNP-PANI-DICAT possess good sensitivity, reusability, and fast extraction of PAHs under the MSPE procedure in various environmental samples.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  2. Chen Y, Huang J, Yeap ZQ, Zhang X, Wu S, Ng CH, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Jun 15;199:271-282.
    PMID: 29626818 DOI: 10.1016/j.saa.2018.03.061
    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  3. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Mar;20(3):265-278.
    PMID: 28296594 DOI: 10.1089/jmf.2016.3836
    Recently, a new syndromic disease combination theory of traditional Chinese medicine (TCM) for hypertensive treatment has been introduced. In the wake of this new concept, a new science-based TCM formula that counteracts various syndromes is needed. The objective of this study was to develop such a formula. Five of the most clinically prescribed TCM herbs that work on different syndromes, namely Gastrodia elata, Uncaria rhynchophylla, Pueraria thomsonii, Panax notoginseng, and Alisma orientale, were selected for this study. The fingerprints of these five herbs were analyzed by tri-step Fourier transform infrared spectroscopy. Three different solvents, 95% ethanol, 50% ethanol, and distilled water, were used for the maceration of the herbs and their vasodilatory effects were studied using in vitro precontracted aortic ring model. Among these, the 50% ethanolic extracts of G. elata (GE50) and A. orientale (AO50), and 95% ethanolic extracts of U. rhynchophylla (UR95), P. thomsonii (PT95), and P. notoginseng (PN95) were found to be the most effective for eliciting vasodilation. Thus, these five extracts were used for orthogonal stimulus-response compatibility group studies by using L25 (5(5)) formula. The best combination ratio for GE50, UR95, PT95, PN95, and AO50, which was assigned as Formula 1 (F1), was found at EC0, EC25, EC20, EC20, and EC10, respectively. The vasodilatory effect of the extracts prepared from different extraction methods using F1 ratio was also studied. From the results, the EC50 and Rmax of total 50% ethanolic extract of five herbs using F1 ratio (F1-2) were 0.028 ± 0.005 mg/mL and 101.71% ± 3.64%, with better values than F1 (0.104 ± 0.014 mg/mL and 97.80% ± 3.12%, respectively). In conclusion, the optimum ratio and appropriate extraction method (F1-2) for the new TCM formula were revealed.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  4. Yoon TL, Yeap ZQ, Tan CS, Chen Y, Chen J, Yam MF
    PMID: 34627017 DOI: 10.1016/j.saa.2021.120440
    A proof-of-concept medicinal herbs identification scheme using machine learning classifiers is proposed in the form of an automated computational package. The scheme makes use of two-dimensional correlation Fourier Transformed Infrared (FTIR) fingerprinting maps derived from the FTIR of raw herb spectra as digital input. The prototype package admits a collection of 11 machine learning classifiers to form a voting pool. A common set of oversampled dataset containing 5 different herbal classes is used to train the pool of classifiers on a one-verses-others manner. The collections of trained models, dubbed the voting classifiers, are deployed in a collective manner to cast their votes to support or against a given inference fingerprint whether it belongs to a particular class. By collecting the votes casted by all voting classifiers, a logically designed scoring system will select out the most probable guess of the identity of the inference fingerprint. The same scoring system is also capable of discriminating an inference fingerprint that does not belong to any of the classes the voting classifiers are trained for as the 'others' type. The proposed classification scheme is stress-tested to evaluate its performance and expected consistency. Our experimental runs show that, by and large, a satisfactory performance of the classification scheme of up to 90 % accuracy is achieved, providing a proof-of-concept viability that the proposed scheme is a feasible, practical, and convenient tool for herbal classification. The scheme is implemented in the form of a packaged Python code, dubbed the "Collective Voting" (CV) package, which is easily scalable, maintained and used in practice.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  5. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  6. Jingying C, Baocai L, Ying C, Wujun Z, Yunqing Z, Yingzhen H, et al.
    PMID: 37625275 DOI: 10.1016/j.saa.2023.123229
    Dioscorea oppositifolia is an important crop and functional food. D. oppositifolia tuber is often adulterated with D. persimilis, D. alata, and D. fordii tuber in the commercial market. This study proposed an integrated Fourier transform infrared spectroscopy (FT-IR) with chemometric approach to differentiate these four Dioscorea species. A total of 107 Dioscorea spp. tuber samples were collected from different locations in China. Principal Component Analysis (PCA), PCA-Class, and Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) were utilised to classify the FT-IR spectra. In this PCA is unable to differentiate the Dioscorea spp. tuber effectively. However, PCA-Class and OPLS-DA can distinguish spp. these 4 species Dioscorea tuber with high accuracy, sensitivity, and specificity. Additionally, the RMSEE, RMSEP and RMSECV values for OPLS-DA model were low, showing that it is a good model. The combination of FT-IR with the PCA-Class and OPLS-DA is practical in discriminating Dioscorea spp. tubers.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  7. Hamidi, M., Mohamed, S.N., Mustapha, R.I.P.R., Hassan, O.H., Yahya, M.Z.A.
    MyJurnal
    In this study, Li1+xAlxTi2-x(PO4)3 (0.0 ≤ x ≤ 0.5) was prepared by acetic acid-assisted sol-gel method. The structural properties of NASICON phosphates material with chemical formula LiTi2(PO4)3 were observed using the Fourier transform infrared spectroscopy. NASICON is a family of crystalline phosphate with a general network system consisting of PO4 tetrahedra, thus bands were assigned by vibrations contributed by basic phosphates, in the wavenumber region between 1300 cm-1 and 600 cm-1. Experimental spectra indicated that all Li1+xAlxTi2-x(PO4)3 (0.0 ≤ x ≤ 0.5), heat treated at 600°C and 700°C for 3 hours in air, samples showed the presence of phosphate peaks with shift in frequency as Al3+ is substituted into the structure, and with increasing temperatures. Some bands broadened and overlapped causing it hard to analyze the arising bands. It however determined the existence of NASICON structure in all of the samples under study.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  8. Razak RA, Abdullah MM, Hussin K, Ismail KN, Hardjito D, Yahya Z
    Int J Mol Sci, 2015;16(5):11629-47.
    PMID: 26006238 DOI: 10.3390/ijms160511629
    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  9. Sim LH, Gan SN, Chan CH, Yahya R
    Spectrochim Acta A Mol Biomol Spectrosc, 2010 Aug;76(3-4):287-92.
    PMID: 20444642 DOI: 10.1016/j.saa.2009.09.031
    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared*
  10. Mohamed SH, Hossain MS, Mohamad Kassim MH, Ahmad MI, Omar FM, Balakrishnan V, et al.
    Polymers (Basel), 2021 Feb 19;13(4).
    PMID: 33669623 DOI: 10.3390/polym13040626
    There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10-30 and 2-6 nm, respectively, and an aspect ratio of 5-15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  11. Hussein MZ, Mohd Amin JB, Zainal Z, Yahaya AH
    J Nanosci Nanotechnol, 2002 Apr;2(2):143-6.
    PMID: 12908300
    Hydrotalcite-like inorganic layers of Zn-Al, a host containing an organic moiety, 2,4-dichlorophenoxy-acetate, as a guest, was prepared by the spontaneous self-assembly method from an aqueous solution for the formation of a new layered organic-inorganic hybrid nanocomposite material. In this synthesis, the host- and guest-forming species were simultaneously included in the mother liquor, aged, and separated. Various Zn/Al ratios (R = 2, 3, and 4), concentrations of 2,4-dichlorophenoxyacetic acid (0.03-0.1 M), and pH (7 and 10) were studied to optimize the formation of the layered nancomposite. It was found that the optimum conditions for the formation of the nanocomposite were R = 4, pH 7, and concentration of 2,4-dichlorophenoxyacetic acid = 0.08 M. X-ray diffraction shows that this sample affords a nanolayered structure with a basal spacing of 24.6 A.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  12. Elmi Sharlina MS, Azwan Mat Lazim, Yaacob WA
    Sains Malaysiana, 2017;46:1549-1555.
    Kanji Dioscorea pentaphylla telah diubah suai dengan pensulfatan dan peneutralan bagi menghasilkan natrium
    kanji sulfat. Tindak balas pensulfatan dilakukan dengan asid sulfurik dalam etanol dan air pada suhu 0o
    C. Darjah
    penukargantian dikira berdasarkan peratus karbon dan sulfur yang ditentukan menggunakan penganalisis unsur CHNS.
    Natrium kanji sulfat yang mempunyai darjah penukargantian dan peratus nisbah berat hasil yang tinggi dipilih dan
    dicirikan dengan spektrum transformasi Fourier inframerah (FT-IR) dan profil pembelauan sinar-X (XRD). Kehadiran
    dua puncak getaran regangan C-O-S dan S=O dalam spektrum FT-IR dan puncak berbeza yang terhasil dalam corak
    difraktogram XRD membuktikan tindak balas berlaku pada struktur kanji. Sifat termal juga ditentukan dengan kalorimeter
    pengimbas pembezaan (DSC) dan analisis termogravimetri (TGA). Natrium kanji sulfat yang dihasilkan mempunyai
    kestabilan termal yang baik kerana mempunyai suhu penguraian pada 265o
    C. Natrium kanji sulfat ini sesuai dijadikan
    bahan tambahan dalam penghasilan hidrogel, organogel dan filem dengan sifat anionik kerana degradasi tidak terjadi
    di bawah suhu ini.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  13. Hariharan M, Sindhu R, Yaacob S
    Comput Methods Programs Biomed, 2012 Nov;108(2):559-69.
    PMID: 21824676 DOI: 10.1016/j.cmpb.2011.07.010
    Crying is the most noticeable behavior of infancy. Infant cry signals can be used to identify physical or psychological status of an infant. Recently, acoustic analysis of infant cry signal has shown promising results and it has been proven to be an excellent tool to investigate the pathological status of an infant. This paper proposes short-time Fourier transform (STFT) based time-frequency analysis of infant cry signals. Few statistical features are derived from the time-frequency plot of infant cry signals and used as features to quantify infant cry signals. General Regression Neural Network (GRNN) is employed as a classifier for discriminating infant cry signals. Two classes of infant cry signals are considered such as normal cry signals and pathological cry signals from deaf infants. To prove the reliability of the proposed features, two neural network models such as Multilayer Perceptron (MLP) and Time-Delay Neural Network (TDNN) trained by scaled conjugate gradient algorithm are also used as classifiers. The experimental results show that the GRNN classifier gives very promising classification accuracy compared to MLP and TDNN and the proposed method can effectively classify normal and pathological infant cries.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  14. Ismail N, Nazri NK, Abdullah AA, Wan Nik WMN, Wright LJ
    Data Brief, 2021 Feb;34:106738.
    PMID: 33521179 DOI: 10.1016/j.dib.2021.106738
    Polychloropolymethylstyrene (PCMS) polymers were synthesized with clay Cloisite and without clay Cloisite and chloromethylstyrene (CMS) combine with styrene (1:1) v/v or known as copolymer and clay Cloisite by the polymerization process. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of each polymer synthesized are reported. The spectra of IR shows the different value of the wavenumber and intensity for each set of different sample. The spectra can be as a reference for others to use in synthesizing this polymer and clay Cloisite for different type of application.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  15. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  16. Nawaz A, Wong TW
    J Microsc, 2016 07;263(1):34-42.
    PMID: 26695532 DOI: 10.1111/jmi.12371
    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared/methods*
  17. Nurulaini H, Wong TW
    J Pharm Sci, 2011 Jun;100(6):2248-57.
    PMID: 21213311 DOI: 10.1002/jps.22459
    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  18. Ramli NA, Wong TW
    Int J Pharm, 2011 Jan 17;403(1-2):73-82.
    PMID: 20974238 DOI: 10.1016/j.ijpharm.2010.10.023
    This study investigated critical physicochemical attributes of low (LV), medium (MV) and high molecular weight (HV) sodium carboxymethylcellulose (SCMC) scaffolds in partial thickness wound healing. SCMC scaffolds were prepared by solvent-evaporation technique. Their in vitro erosion, moisture affinity, morphology, tensile strength, polymer molecular weight and carboxymethyl substitution, and in vivo wound healing profiles were determined. Inferring from rat wound size, re-epithelialization and histological profiles, wound healing progressed with HV scaffold>LV-MV scaffold>control with no scaffold. The transepidermal water loss (TEWL) from wound of rats treated by control>HV scaffold>LV-MV scaffold. HV scaffold had the highest tensile strength of all matrices and was resistant to erosion in simulated wound fluid. In spite of constituting small nanopores, it afforded a substantial TEWL than MV and LV scaffolds from wound across an intact matrix through its low moisture affinity characteristics. The HV scaffold can protect moisture loss without its excessive accumulation at wound bed which hindered re-epithelialization process. Regulation of transepidermal water movement and wound healing by scaffolds was governed by SCMC molecular weight instead of its carboxymethyl substitution degree or matrix pore size distribution, with large molecular weight HV preferred over lower molecular weight samples.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  19. Chachuli SH, Nawaz A, Shah K, Naharudin I, Wong TW
    Pharm Res, 2016 06;33(6):1497-508.
    PMID: 26951565 DOI: 10.1007/s11095-016-1893-5
    PURPOSE: Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages.

    METHODS: Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques.

    RESULTS: The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary.

    CONCLUSION: Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  20. Saleemi MA, Fouladi MH, Yong PVC, Wong EH
    Materials (Basel), 2020 Apr 03;13(7):6-6.
    PMID: 32260216 MyJurnal DOI: 10.3390/ma13071676
    Microorganisms have begun to develop resistance because of inappropriate and extensive use of antibiotics in the hospital setting. Therefore, it seems to be necessary to find a way to tackle these pathogens by developing new and effective antimicrobial agents. Carbon nanotubes (CNTs) have attracted growing attention because of their remarkable mechanical strength, electrical properties, and chemical and thermal stability for their potential applications in the field of biomedical as therapeutic and diagnostic nanotools. However, the impact of carbon nanotubes on microbial growth has not been fully investigated. The primary purpose of this research study is to investigate the antimicrobial activity of CNTs, particularly double-walled and multi-walled nanotubes on representative pathogenic strains such as Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans. The dispersion ability of CNT types (double-walled and multi-walled) treated with a surfactant such as sodium dodecyl-benzenesulfonate (SDBS) and their impact on the microbial growth inhibition were also examined. A stock concentration 0.2 mg/mL of both double-walled and multi-walled CNTs was prepared homogenized by dispersing in surfactant solution by using probe sonication. UV-vis absorbance, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used for the characterization of CNTs dispersed in the surfactant solution to study the interaction between molecules of surfactant and CNTs. Later, scanning electron microscopy (SEM) was used to investigate how CNTs interact with the microbial cells. The antimicrobial activity was determined by analyzing optical density growth curves and viable cell count. This study revealed that microbial growth inhibited by non-covalently dispersed CNTs was both depend on the concentration and treatment time. In conclusion, the binding of surfactant molecules to the surface of CNTs increases its ability to disperse in aqueous solution. Non-covalent method of CNTs dispersion preserved their structure and increased microbial growth inhibition as a result. Multi-walled CNTs exhibited higher antimicrobial activity compared to double-walled CNTs against selected pathogens.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links