Displaying publications 61 - 80 of 384 in total

Abstract:
Sort:
  1. Moss B, Lim KK, Beltram A, Moniz S, Tang J, Fornasiero P, et al.
    Sci Rep, 2017 06 07;7(1):2938.
    PMID: 28592816 DOI: 10.1038/s41598-017-03065-5
    In this article we present the first comparative study of the transient decay dynamics of photo-generated charges for the three polymorphs of TiO2. To our knowledge, this is the first such study of the brookite phase of TiO2 over timescales relevant to the kinetics of water splitting. We find that the behavior of brookite, both in the dynamics of relaxation of photo-generated charges and in energetic distribution, is similar to the anatase phase of TiO2. Moreover, links between the rate of recombination of charge carriers, their energetic distribution and the mode of transport are made in light of our findings and used to account for the differences in water splitting efficiency observed across the three polymorphs.
    Matched MeSH terms: Titanium
  2. Wahab RM, Idris H, Yacob H, Ariffin SH
    Eur J Orthod, 2012 Apr;34(2):176-81.
    PMID: 21478298 DOI: 10.1093/ejo/cjq179
    This prospective study investigated the difference in clinical efficiency between Damon™ 3 self-ligating brackets (SLB) compared with Mini Diamond conventional ligating brackets (CLBs) during tooth alignment in straightwire fixed appliance therapy. Twenty-nine patients (10 males and 19 females), aged between 14 and 30 years, were randomly divided into two groups: 14 patients received the SLB and 15 received the CLB. Upper arch impressions were taken for pre-treatment records (T(0)). A transpalatal arch was soldered to both maxillary first molar bands prior to extraction of the maxillary first premolars, followed by straightwire fixed appliances (0.022 × 0.028 inch). A 0.014 inch nickel titanium (NiTi) wire was used as the levelling and aligning archwire. Four monthly reviews were undertaken and impressions of the upper arch were taken at each appointment (T(1), T(2), T(3), and T(4)). Displacements of the teeth were determined using Little's irregularity index (LII). Data were analysed using the Mann-Whitney U-test. In the aligning stage, the CLB group showed significantly faster alignment of the teeth compared with the SLB group at the T(1)-T(2) interval (P < 0.05). However, there were no differences at T(2)-T(3), and T(3)-T(4) for either group (P > 0.05). The CLB group showed 98 per cent crowding alleviation compared with 67 per cent for the SLB after 4 months of alignment and levelling. Mini Diamond brackets aligned the teeth faster than Damon™ 3 but only during the first month. There was no difference in efficacy between the two groups in the later 3 weeks. Alleviation of crowding was faster with CLB than with SLB.
    Matched MeSH terms: Titanium/chemistry
  3. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
    Matched MeSH terms: Titanium/chemistry
  4. Azmer MI, Aziz F, Ahmad Z, Raza E, Najeeb MA, Fatima N, et al.
    Talanta, 2017 Nov 01;174:279-284.
    PMID: 28738579 DOI: 10.1016/j.talanta.2017.06.016
    This research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO2NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO2nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The sensors have been examined over a wide range of relative humidity i.e. 20-99% RH. The sensor with TiO2(90nm) shows reduced sensitivity-threshold and improved linearity. The VOPcPhO:TiO2(90nm) nano-composite film is comprised of uniformly distributed voids which makes the surface more favorable for adsorption of moisture content from environment. The VOPcPhO:TiO2nano-composite based sensor demonstrates remarkable improvement in the sensing parameter when equated with VOPcPhO sensors.
    Matched MeSH terms: Titanium
  5. Chai WL, Moharamzadeh K, van Noort R, Emanuelsson L, Palmquist A, Brook IM
    J Periodontal Res, 2013 Oct;48(5):663-70.
    PMID: 23442017 DOI: 10.1111/jre.12062
    Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM).
    Matched MeSH terms: Titanium/chemistry
  6. Lai CW, Lau KS, Chou PM
    J Nanosci Nanotechnol, 2019 Dec 01;19(12):7934-7942.
    PMID: 31196312 DOI: 10.1166/jnn.2019.16777
    Using solar-powered water electrolysis systems for hydrogen generation is a key decision for the development of a sustainable hydrogen economy. A facile approach is presented in the present investigation to improve the solar-powered photoelectrochemical performance of water electrolysis systems by synthesising well-aligned and highly ordered TiO₂ nanotube films without bundling through the electrochemical anodisation technique. Herein, geometrical calculations were conducted for all synthesised TiO₂ nanotubes, and determination of the aspect ratio (AR) and geometric surface area factor (G) was achieved. On the basis of the collected data, well-aligned TiO₂ nanotubes with an AR of approximately 60 and G of approximately 400 m² ·g-1 were successfully formed in an electrolyte mixture of ethylene glycol with 0.3 wt% NH4F and 5 wt% H₂O₂ at 40 V for 60 min. The nanotubes were subsequently annealed at 400 °C to form anatase-phase TiO₂ nanotube films. The resultant well-aligned and highly ordered TiO₂ nanotube films exhibited a photocurrent density of 1.5 mA · cm-2 due to a large number of photo-induced electrons moving along the tube axis and perpendicular to the Ti substrate, which greatly reduces interfacial recombination losses.
    Matched MeSH terms: Titanium
  7. Afzal S, Samsudin EM, Julkapli NM, Hamid SB
    Environ Sci Pollut Res Int, 2016 Nov;23(22):23158-23168.
    PMID: 27591888
    For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts' surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of -NH2 and -OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.
    Matched MeSH terms: Titanium/chemistry*
  8. Saud SN, Hosseinian S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:687-694.
    PMID: 27524069 DOI: 10.1016/j.msec.2016.06.048
    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.
    Matched MeSH terms: Titanium/chemistry*
  9. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1261-1274.
    PMID: 28532004 DOI: 10.1016/j.msec.2017.04.102
    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys.
    Matched MeSH terms: Titanium
  10. Ibrahim, R.E., Talari, M.K., Sabrina, M. Yahaya, Rosmamuhamadani, R., Sulaiman, S., Ismail, M.I.S.
    MyJurnal
    The aluminium-silicon (Al-Si) based on Metal Matrix Composites (MMCs) is widely used in lightweight
    constructions and transport applications requiring a combination of high strength and ductility. A grain
    refinement plays a crucial role in improving characteristics and properties of Al alloys. In this investigation,
    titanium diboride (TiB2) and scandium (Sc) inoculants were added to the Al-Si alloys for grain refinement of
    an alloy. In this investigation, the corrosion resistance rate of Al-Si cast alloy reinforced by TiB2 and Sc were
    measured by potentiostat (AUTOLAB) instrument. The aim of this research is to investigate the corrosion
    rate for Al-Si-TiB2-Sc composites that immersed in different concentration of acidic solutions. Besides, the
    immersion time of acidic solutions also was investigated. All the samples were prepared accordingly for
    ASTM standard by the composition of 6.0 wt% TiB2 and 0.6wt% Sc. All the samples undergo cold mounting
    technique for easy handling on corrosion tests. Then the samples were immersed in two different
    concentrations acidic medium solutions, which were 0.1.and 1.0 M hydrochloric acids (HCl). The corrosion
    rate also was investigated for immersion samples of 1.0 M HCl for 21 days. From the results obtained, added
    TiB2 and Sc onto Al-Si alloy gave the better properties in corrosion resistance. Corrosion rates to reduce when
    the samples were immersed in a lower concentration of acidic medium, 0.1 HCl. However, there are some
    significant on the result but it still following the corrosion rates trend. Thus, improvements to reinforcement
    content need to be done in further research to cover the lack of this corrosion rates trend.
    Matched MeSH terms: Titanium
  11. Al-Dulaimi AA, Shahrir Hashim, Khan M
    Sains Malaysiana, 2011;40:1179-1186.
    Two inorganic pigments (TiO2 and SiO2) were used to prepare composites with polyaniline (PANI) by situ polymerization method. PANI and PANI composites with SiO2 and TiO2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO2 and PANI-TiO2) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments.
    Matched MeSH terms: Titanium
  12. Huang X, Shan L, Cheng K, Weng W
    ACS Biomater Sci Eng, 2017 Dec 11;3(12):3254-3260.
    PMID: 33445368 DOI: 10.1021/acsbiomaterials.7b00551
    The topography at the micro/nanoscale level for biomaterial surfaces has been thought to play vital roles in their interactions with cells. However, discovering the interdisciplinary mechanisms underlying how cells respond to micro-nanostructured topography features still remains a challenge. In this work, ∼37 μm 3D printing used titanium microspheres and their further hierarchical micro-nanostructured spheres through hydrothermal treatment were adopted to construct typical model surface topographies to study the preosteoblastic cell responses (adhesion, proliferation, and differentiation). We here demonstrated that not only the hierarchical micro-nanostructured surface topography but also their distribution density played critical role on cell cytocompatibility. The microstructured topography feature surface with middle-density distributed titanium microspheres showed significantly enhanced cell responses, which might be attributed to the better cellular interaction due to the cell aggregates. However, the hierarchical micro-nanostructured topography surface, regardless of the distribution density of titanium microspheres, improved the cell-surface interactions because of the enhanced initial protein adsorption, thereby reducing the cell aggregates and consequently their responses. This work, therefore, provides new insights into the fundamental understanding of cell-material interactions and will have a profound impact on further designing micro-nanostructured topography surfaces to control cell responses.
    Matched MeSH terms: Titanium
  13. Bakr ZH, Wali Q, Ismail J, Elumalai NK, Uddin A, Jose R
    Data Brief, 2018 Jun;18:860-863.
    PMID: 29900250 DOI: 10.1016/j.dib.2018.03.110
    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO2-TiO2) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanowire for dye-sensitized solar cells" [1].
    Matched MeSH terms: Titanium
  14. Hossain MB, Habib SB, Hossain MS, Jolly YN, Kamal AHM, Idris MH, et al.
    Data Brief, 2020 Aug;31:105911.
    PMID: 32637507 DOI: 10.1016/j.dib.2020.105911
    Meghna River Estuary, the largest estuarine system (GBM, Ganges-Brahmaputra-Meghna) in Bangladesh, is a major spawning ground of national fish, Hilsha shad. In this study, we collected 24 surface sediment and 24 water samples from the entire lower estuary (4 sites, 3 sampling points from each site, 2 replicas from each sampling point) to detect trace/heavy metals. Sediment samples were collected from the top surface soil (0-5 cm) using Ekman grab sampler and water samples from 5 cm below the surface layer using plastic water bottles. After collection, sediment and water samples were preserved as necessary using HNO3 (for water). Immediately after reaching the laboratory, sediment samples were dried in an oven at 70°C until the constant weight gained. The metals were then analyzed using energy-dispersive X-ray fluorescence method (EDXRF) and calculated the metal concentrations. In total, 12 metals were detected and the average value (mg/Kg) of all metals for sediment samples followed the descending order of Fe > Ca > K >Ti >Sr >Zr >Rb> Cu > Zn >Pb >As > Ni, and for water the order (µg/mL) of Fe >Ti > Ca > Co >Mn > Ni > Zn >Sr > Cu > As > Se . Besides, several physicochemical parameters i.e. water pH, soil pH, temperature, salinity, dissolved oxygen, hardness, and alkalinity of the 12 sampling points were also measured in-situ using handheld instruments.
    Matched MeSH terms: Titanium
  15. Soundhar A, Zubar HA, Sultan MTBHH, Kandasamy J
    Data Brief, 2019 Apr;23:103671.
    PMID: 30788395 DOI: 10.1016/j.dib.2019.01.019
    Newly prepared titanium alloy (Ti-13Zr-13Nb (TZN)) using powder metallurgy is considered in this investigation. Titanium alloys (TZN) are used in hip and knee replacement for orthopedic implants. Conventional machining, TZN alloys produce higher tool wear rate and poor surface quality, but this can be reduced by Electrical Discharge Machining (EDM) method. Moreover, EDM produce good biological and corrosion resistant surface. In this research, experiments were conducted by considering the influential process factors such as pulse on time, pulse off time, voltage, and current. The experiments were designed based on Response Surface Methodology (RSM) of face centered central composite design. Analysis of Variance (ANOVA) was conducted to identify the significance process factors and their relation to output responses such as Electrode Wear Rate (EWR), Surface Roughness (SR) and Material Removal Rate (MRR). Further, an empirical model was developed by RSM in order to predict the output responses.
    Matched MeSH terms: Titanium
  16. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):130-43.
    PMID: 20673570 DOI: 10.1016/j.cis.2010.06.002
    Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.
    Matched MeSH terms: Titanium/chemistry*
  17. Alya Nadhira Nasron, Ninna Sakina Azman, Nor Syaidatul Syafiqah Mohd Rashid, Nur Rahimah Said
    MyJurnal
    Degradation of azo dyes by using advanced oxidation processes (AOPs) was conducted. In this approach, different AOPs, which are Fenton process and titanium dioxide (TiO2) catalyst, were examined and compared for the degradation of an azo dye (i.e., Congo red dye). The sample was tested under UV light and the experiment was conducted for 90 min with 15 min interval. The degradation rate of dye was determined using UV-Vis spectrophotometry. The effect of several parameters on the degradation process such as the concentration of metal ions (Fe2+, Cu2+, and Mn2+) as the catalyst in Fenton process, the concentration of hydrogen peroxide (H2O2), the mass of TiO2, and pH value of the dye solution were investigated. The initial Congo red concentration used for both techniques was 5 ppm. The results showed that the percentage degradation followed the sequence of H2O2/Fe2+/UV, H2O2/Cu2+/UV, H2O2/Mn2+/UV, and TiO2/UV. The best operating conditions for H2O2/Fe2+/UV were pH 3, 0.2 M concentration of H2O2, and 0.02 M concentration of metal ion in 15 min, which achieved 99.92% degradation of dye. The Fourier transform infrared (FTIR) spectrum showed the absence of azo bond (N=N) peak after degradation process, which indicates the successful cleavage of azo bond in the chemical structure of Congo red.
    Matched MeSH terms: Titanium
  18. Habiba U, Lee JJL, Joo TC, Ang BC, Afifi AM
    Int J Biol Macromol, 2019 Jun 15;131:821-827.
    PMID: 30904531 DOI: 10.1016/j.ijbiomac.2019.03.132
    In this study, chitosan/polyvinyl alcohol/TiO2 nanofiber was fabricated via electrospinning at a pump rate of 1.5 mL/h and voltage 6 kV. Field-emission scanning electron microscopic images showed bead free finer nanofiber. Fourier transform infrared spectra proved the formation of strong bond among chitosan, polyvinyl alcohol and TiO2. X-ray powder diffraction showed that TiO2 became amorphous in the composite nanofiber. Toughness and thermal stability of the chitosan/PVA nanofibrous membrane was increased with addition TiO2. The chitosan/PVA/TiO2 nanofibrous membrane was stable at basic medium. But degraded in acidic and water medium after 93 and 162 h, respectively. The adsorption mechanism of congo red obeyed the Langmuir isotherm model. On the other hand, adsorption characteristic of methyl orange fitted well with both Langmuir and Freundlich isotherm models. The maximum adsorption capacity of the resulting membrane for congo red and methyl orange is 131 and 314 mg/g, respectively. However, a high dose of adsorbent was required for congo red.
    Matched MeSH terms: Titanium/chemistry*
  19. Nagentrau M, Mohd Tobi AL, Jamian S, Otsuka Y, Hussin R
    J Mech Behav Biomed Mater, 2021 10;122:104657.
    PMID: 34246851 DOI: 10.1016/j.jmbbm.2021.104657
    Present research aims to develop a finite element computational model to examine delamination-fretting wear behaviour that can suitably mimic actual loading conditions at HAp-Ti-6Al-4V interface of uncemented hip implant femoral stem component. A simple finite element contact configuration model based on fretting fatigue experimental arrangement subjected to different mechanical and tribological properties consist of contact pad (bone), HAp coating and Ti-6Al-4V substrate are developed using adaptive wear modelling approach adopting modified Archard wear equation to be examined under static simulation. The developed finite element model is validated and verified with reported literatures. The findings revealed that significant delamination-fretting wear is recorded at contact edge (leading edge) as a result of substantial contact pressure and contact slip driven by stress singularity effect. The delamination-fretting wear behaviour is promoted under higher delamination length, lower normal loading with higher fatigue loading, increased porous (cancellous) and cortical bone elastic modulus with higher cycle number due to significant relative slip amplitude as the result of reduced interface rigidity. Tensile-compressive condition (R=-1) experiences most significant delamination-fretting wear behaviour (8 times higher) compared to stress ratio R=0.1 and R=10.
    Matched MeSH terms: Titanium*
  20. Neagu D, Papaioannou EI, Ramli WKW, Miller DN, Murdoch BJ, Ménard H, et al.
    Nat Commun, 2017 11 30;8(1):1855.
    PMID: 29187751 DOI: 10.1038/s41467-017-01880-y
    Metal nanoparticles prepared by exsolution at the surface of perovskite oxides have been recently shown to enable new dimensions in catalysis and energy conversion and storage technologies owing to their socketed, well-anchored structure. Here we show that contrary to general belief, exsolved particles do not necessarily re-dissolve back into the underlying perovskite upon oxidation. Instead, they may remain pinned to their initial locations, allowing one to subject them to further chemical transformations to alter their composition, structure and functionality dramatically, while preserving their initial spatial arrangement. We refer to this concept as chemistry at a point and illustrate it by tracking individual nanoparticles throughout various chemical transformations. We demonstrate its remarkable practical utility by preparing a nanostructured earth abundant metal catalyst which rivals platinum on a weight basis over hundreds of hours of operation. Our concept enables the design of compositionally diverse confined oxide particles with superior stability and catalytic reactivity.
    Matched MeSH terms: Titanium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links