Displaying publications 61 - 80 of 594 in total

Abstract:
Sort:
  1. Rasheed M, Jawaid M, Parveez B, Hussain Bhat A, Alamery S
    Polymers (Basel), 2021 Feb 01;13(3).
    PMID: 33535490 DOI: 10.3390/polym13030465
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging.
    Matched MeSH terms: X-Ray Diffraction
  2. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY
    Int J Biol Macromol, 2018 May;111:352-358.
    PMID: 29320725 DOI: 10.1016/j.ijbiomac.2018.01.037
    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
    Matched MeSH terms: X-Ray Diffraction
  3. Sagadevan S, Vennila S, Suraiya Begum SN, Wahab YA, Hamizi NAB, Marlinda AR, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5452-5457.
    PMID: 32331117 DOI: 10.1166/jnn.2020.17855
    Nanostructure materials are of interest in last few decades due to their unique size-dependent physio-chemical properties. In this paper, zinc oxide (ZnO) and barium doped ZnO nanodisks (NDs) were synthesized using sonochemical method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), UV-vis absorption and dielectric measurements. The XRD and FTIR studies confirm the crystalline nature of ZnO NDs, and the average crystallite size was found to be ~25 nm for pure ZnO and ~22 nm for Ba doped ZnO NDs. SEM study confirmed the spherical shaped ZnO NDs with average sizes in the range of 20-30 nm. The maximum absorbance was obtained in the 200-500 nm regions with a prominent peak absorbance were observed by UV-vis spectra. The corresponding band gap for ZnO NDs and Ba doped ZnO NDs were calculated using Tauc's plot and was found to be 3.12 and 3.04, respectively. The conductivity and dielectric measurements as a function of frequency have been studied.
    Matched MeSH terms: X-Ray Diffraction
  4. Tanveer Ahmed Khan, Mohd Raihan Taha, Ali Asghar Firoozi, Ali Akbar Firoozi
    Sains Malaysiana, 2017;46:1269-1267.
    Environmental concerns have significantly influenced the construction industry regarding the identification and use of environmentally sustainable construction materials. In this context, enzymes (organic materials) have been introduced recently for ground improvement projects such as pavements and embankments. The present experimental study was carried out in order to evaluate the compressive strength of a sedimentary residual soil treated with three different types of enzymes, as assessed through a California bearing ratio (CBR) test. Controlled untreated and treated soil samples containing four dosages (the recommended dose and two, five and 10 times the recommended dose) were prepared, sealed and cured for four months. Following the curing period, samples were soaked in water for four days before the CBR tests were administered. These tests showed no improvement in the soil is compressive strength; in other words, samples prepared even at higher dosages did not exhibit any improvement. Nuclear magnetic resonance (NMR) spectroscopy tests were carried out on three enzymes in order to study the functional groups present in them. Furthermore, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) tests were executed for untreated and treated soil samples to determine if any chemical reaction took place between the soil and the enzymes. Neither of the tests (XRD nor FESEM) revealed any change. In fact, the XRD patterns and FESEM images for untreated and treated soil samples were indistinguishable.
    Matched MeSH terms: X-Ray Diffraction
  5. Nisar M, Khan SA, Qayum M, Khan A, Farooq U, Jaafar HZ, et al.
    Molecules, 2016 Mar 25;21(4):411.
    PMID: 27023506 DOI: 10.3390/molecules21040411
    The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.
    Matched MeSH terms: X-Ray Diffraction
  6. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
    Matched MeSH terms: X-Ray Diffraction
  7. Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A
    Carbohydr Polym, 2014 Jun 15;106:326-34.
    PMID: 24721086 DOI: 10.1016/j.carbpol.2014.02.085
    Bionanocomposite films based on regenerated cellulose (RC) and incorporated with zeolite at different concentrations were fabricated by dissolving cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid using a simple green method. The interactions between the zeolite and the cellulose matrix were confirmed by Fourier transform infrared spectra. Mechanical properties of the nanocomposite films significantly improved as compared with the pure regenerated cellulose film, without the loss of extensibility. Zeolite incorporation enhanced the thermal stability and char yield of the nanocomposites. The scanning electron microscopy and transmission electron microscopy showed that zeolite was uniformly dispersed in the regenerated cellulose matrix. In vitro cytotoxicity test demonstrated that both RC and RC/zeolite nanocomposite films are cytocompatible. These results indicate that the prepared nanocomposites have potential applications in biodegradable packaging, membranes and biomedical areas.
    Matched MeSH terms: X-Ray Diffraction
  8. Mahmoudian MR, Basirun WJ, Woi PM, Hazarkhani H, Alias YB
    Mikrochim Acta, 2019 05 22;186(6):369.
    PMID: 31119482 DOI: 10.1007/s00604-019-3481-y
    The study presents the synthesis of polypyrrole-coated palladium platinum/nitrogen-doped reduced graphene oxide nanocomposites (PdPt-PPy/N-rGO NC) via direct the reduction of Pd(II) and Pt(II) in the presence of pyrrole monomer, N-rGO and L-cysteine as the reducing agent. X-ray diffraction confirmed the presence of metallic Pd and Pt from the reduction of Pd and Pt cations. Transmission electron microscopy images revealed the presence of Pd, Pt and PPy deposition on N-rGO. Impedance spectroscopy results gave a decreased charge transfer resistance due to the presence of N-rGO. The nanocomposites were synthesized with different Pd/Pt ratios (2:1, 1:1 and 1:2). A glassy carbon electrode (GCE) modified with the nanocomposite showed enhanced electrochemical sensing capability for formaldehyde in 0.1 M sulfuric acid solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GCE modified with Pd2Pt1 PPy N-rGO. At a typical potential of 0.45 V (vs. SCE), the sensitivity in the linear segment was 345.8 μA.mM -1. cm-2. The voltammetric response was linear between 0.01 and 0.9 mM formaldehyde concentration range, with a 27 µM detection limit (at S/N = 3). Graphical abstract Schematic presentation of formaldehyde detection by Pd2Pt1-PPy/nitrogen-doped reduced Graphene Oxide Nanocomposite (Pd2Pt1-PPy /N-Gr NC). The decrease of charge transfer resistance and the agglomeration of deposited metals in the presence of N-rGO enhance the current response of the electrochemical sensor.
    Matched MeSH terms: X-Ray Diffraction
  9. Abdulrahman AF, Ahmed SM, Barzinjy AA, Hamad SM, Ahmed NM, Almessiere MA
    Nanomaterials (Basel), 2021 Mar 09;11(3).
    PMID: 33803274 DOI: 10.3390/nano11030677
    Ultraviolet (UV) photodetectors (PDs) based on high-quality well-aligned ZnO nanorods (NRs) were fabricated using both modified and conventional chemical bath deposition (CBD) methods. The modified chemical bath deposition (M-CBD) method was made by adding air bubbles to the growth solution during the CBD process. The viability and effectiveness of M-CBD were examined by developing UV PDs based on ZnO NRs. The ZnO nano-seed layer was coated on a glass substrate utilizing radiofrequency (RF) sputtering. The impact of the different growth-times on morphology, growth rate, crystal structure, and optical and chemical properties were investigated systematically using different characterization techniques, such as field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) analysis, UV-VIS double beam spectrometer, and energy dispersive X-ray analysis (EDX), respectively. The Al/ZnO UV PDs based on ZnO nanorods were fabricated with optimum growth conditions through the two methods of preparation. This study showed that the synthesized ZnO NRs using the M-CBD method for different growth times possess better properties than the conventional method under similar deposition conditions. Despite having the highest aspect ratio and growth rate of ZnO NRs, which were found at 4 h growth duration for both methods, the aspect ratio of ZnO NRs using the M-CBD technique was comparatively higher than the conventional CBD method. Besides, the UV PDs fabricated by the M-CBD method at 5 V bias voltage showed high sensitivity, short response time, quick recovery time, high gain, low dark current, and high photocurrent compared with the UV PD device fabricated by the conventional CBD method.
    Matched MeSH terms: X-Ray Diffraction
  10. Yasin Y, Ismail NM, Hussein MZ, Aminudin N
    J Biomed Nanotechnol, 2011 Jun;7(3):486-8.
    PMID: 21830495
    A drug-inorganic nanostructured material involving pharmaceutically active compound lawsone intercalated Zn-Al layered double hydroxides (Law-LDHs) with Zn/AI = 4 has been assembled by co-precipitation and ion exchange methods. Powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis indicate a successful intercalation of lawsone between the layers of layered double hydroxides. It suggests that layered double hydroxides may have application as the basis of a drug delivery system.
    Matched MeSH terms: X-Ray Diffraction
  11. Rennukka M, Sipaut CS, Amirul AA
    Biotechnol Prog, 2014 Nov-Dec;30(6):1469-79.
    PMID: 25181613 DOI: 10.1002/btpr.1986
    This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.
    Matched MeSH terms: X-Ray Diffraction
  12. Balela, M.D.L., Lockman, Z., Azizan, A., Matsubara, E., Amorsolo , A.V. Jr.
    MyJurnal
    Monodispersed and size-tunable nanocrystalline cobalt (Co) particles in the range of 100 to 400 nm are prepared by the reduction of Co(II) species in propylene glycol. Control of the particle size is achieved by varying the initial Co(II) species concentration and by the addition of nucleating agents. Smaller Co particles are produced with increasing amounts of Co(II) species and in the presence of nucleating agents. X-ray diffraction analysis (XRD) shows that the Co particles are predominantly face-centered cubic crystals of about 8-14 nm. The Co particles are also ferromagnetic at room temperature.
    Matched MeSH terms: X-Ray Diffraction
  13. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: X-Ray Diffraction
  14. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Afnan Uda MN, et al.
    Prep Biochem Biotechnol, 2021;51(1):86-95.
    PMID: 32713293 DOI: 10.1080/10826068.2020.1793174
    A chemical method to synthesize amorphous silica nanoparticles from the incinerated paddy straw has been introduced. The synthesis was conducted through the hydrolysis by alkaline-acidic treatments. As a result, silica particles produced with the sizes were ranging at 60-90 nm, determined by high-resolution microscopy. The crystallinity was confirmed by surface area electron diffraction. Apart from that, chemical and diffraction analyses for both rice straw ash and synthesized silica nanoparticles were conducted by X-ray diffraction and Fourier-transform infrared spectroscopy. The percentage of silica from the incinerated straw was calculated to be 28.3. The prominent surface chemical bonding on the generated silica nanoparticles was with Si-O-Si, stretch of Si-O and symmetric Si-O bonds at peaks of 1090, 471, and 780 cm-1, respectively. To confirm the impurities of the elements in the produced silica, were analyzed using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The stability of silica nanoparticles was investigated using thermogravimetric analysis and zeta potential. The measured size from zeta potential analysis was 411.3-493 nm and the stability of mass reduction was located at 200 °C with final amount of mass reduced ∼88% and an average polydispersity Index was 0.195-0.224.
    Matched MeSH terms: X-Ray Diffraction
  15. Adam F, Andas J
    J Colloid Interface Sci, 2007 Jul 1;311(1):135-43.
    PMID: 17391688
    Iron and 4-(methylamino)benzoic acid have been successfully incorporated into silica extracted from rice husk. The silica/Fe/amine complex, RH-Fe(5% amine), showed a ca. 24% increase in specific surface area compared to RH-Fe. This increase was attributed to the templated formation of regular pores. The XRD showed the RH-Fe(5% amine) to be amorphous. The Friedel-Crafts benzylation reaction with toluene using RH-Fe(5% amine) showed a drastic reduction in the di-substituted products to ca. 1.0%.
    Matched MeSH terms: X-Ray Diffraction
  16. Lau SC, Lim HN, Basri M, Fard Masoumi HR, Ahmad Tajudin A, Huang NM, et al.
    PLoS One, 2014;9(8):e104695.
    PMID: 25127038 DOI: 10.1371/journal.pone.0104695
    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.
    Matched MeSH terms: X-Ray Diffraction
  17. Nurdin I, Johan MR, Yaacob II, Ang BC
    ScientificWorldJournal, 2014;2014:589479.
    PMID: 24963510 DOI: 10.1155/2014/589479
    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.
    Matched MeSH terms: X-Ray Diffraction
  18. Habiba U, Afifi AM, Salleh A, Ang BC
    J Hazard Mater, 2017 Jan 15;322(Pt A):182-194.
    PMID: 27436300 DOI: 10.1016/j.jhazmat.2016.06.028
    In this study, chitosan/polyvinyl alcohol (PVA)/zeolite nanofibrous composite membrane was fabricated via electrospinning. First, crude chitosan was hydrolyzed with NaOH for 24h. Afterward, hydrolyzed chitosan solution was blended with aqueous PVA solution in different weight ratios. Morphological analysis of chitosan/PVA electrospun nanofiber showed a defect-free nanofiber material with 50:50 weight ratio of chitosan/PVA. Subsequently, 1wt.% of zeolite was added to this blended solution of 50:50 chitosan/PVA. The resulting nanofiber was characterized with field emission scanning electron microscopy, X-Ray diffraction, Fourier transform infrared spectroscopy, swelling test, and adsorption test. Fine, bead-free nanofiber with homogeneous nanofiber was electrospun. The resulting membrane was stable in distilled water, acidic, and basic media in 20 days. Moreover, the adsorption ability of nanofibrous membrane was studied over Cr (VI), Fe (III), and Ni (II) ions using Langmuir isotherm. Kinetic parameters were estimated using the Lagergren first-order, pseudo-second-order, and intraparticle diffusion kinetic models. Kinetic study showed that adsorption rate was high. However, the resulting nanofiber membrane showed less adsorption capacity at high concentration. The adsorption capacity of nanofiber was unaltered after five recycling runs, which indicated the reusability of chitosan/PVA/zeolite nanofibrous membrane. Therefore, chitosan/PVA/zeolite nanofiber can be a useful material for water treatment at moderate concentration of heavy metals.
    Matched MeSH terms: X-Ray Diffraction
  19. Woo HJ, Arof AK
    PMID: 26945998 DOI: 10.1016/j.saa.2016.02.034
    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94×10(-7)Scm(-1) to 3.82×10(-5)Scm(-1). Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN(-) stretching mode (2030-2090cm(-1)). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4(+) complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.
    Matched MeSH terms: X-Ray Diffraction
  20. Hosseini S, Jahangirian H, Webster TJ, Soltani SM, Aroua MK
    Int J Nanomedicine, 2016;11:3969-78.
    PMID: 27574426 DOI: 10.2147/IJN.S96558
    Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol-gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV-visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm(-2) at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm(-2) from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.
    Matched MeSH terms: X-Ray Diffraction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links