BACKGROUND: No study has directly compared the risk factors associated with subclinical coronary atherosclerosis and CRA.
STUDY: This was a cross-sectional study using multinomial logistic regression analysis of 4859 adults who participated in a health screening examination (2010 to 2011; analysis 2014 to 2015). CAC scores were categorized as 0, 1 to 100, or >100. Colonoscopy results were categorized as absent, low-risk, or high-risk CRA.
RESULTS: The prevalence of CAC>0, CAC 1 to 100 and >100 was 13.0%, 11.0%, and 2.0%, respectively. The prevalence of any CRA, low-risk CRA, and high-risk CRA was 15.1%, 13.0%, and 2.1%, respectively. The adjusted odds ratios (95% confidence interval) for CAC>0 comparing participants with low-risk and high-risk CRA with those without any CRA were 1.35 (1.06-1.71) and 2.09 (1.29-3.39), respectively. Similarly, the adjusted odds ratios (95% confidence interval) for any CRA comparing participants with CAC 1 to 100 and CAC>100 with those with no CAC were 1.26 (1.00-1.6) and 2.07 (1.31-3.26), respectively. Age, smoking, diabetes, and family history of CRC were significantly associated with both conditions.
CONCLUSIONS: We observed a graded association between CAC and CRA in apparently healthy individuals. The coexistence of both conditions further emphasizes the need for more evidence of comprehensive approaches to screening and the need to consider the impact of the high risk of coexisting disease in individuals with CAC or CRA, instead of piecemeal approaches restricted to the detection of each disease independently.
DESIGN: Population-based, cross-sectional study.
SUBJECTS: Adults aged > 50 years were recruited from the third examination of the population-based Singapore Malay Eye Study.
METHODS: All participants underwent a standardized comprehensive examination and spectral-domain OCTA (Optovue) of the macula. OCT angiography scans that revealed pre-existing retinal disease, revealed macular pathology, and had poor quality were excluded.
MAIN OUTCOME MEASURES: The normative quantitative vessel densities of the superficial layer, deep layer, and foveal avascular zone (FAZ) were evaluated. Ocular and systemic associations with macular retinal vasculature parameters were also evaluated in a multivariable analysis using linear regression models with generalized estimating equation models.
RESULTS: We included 1184 scans (1184 eyes) of 749 participants. The mean macular superficial vessel density (SVD) and deep vessel density (DVD) were 45.1 ± 4.2% (95% confidence interval [CI], 37.8%-51.4%) and 44.4 ± 5.2% (95% CI, 36.9%-53.2%), respectively. The mean SVD and DVD were highest in the superior quadrant (48.7 ± 5.9%) and nasal quadrant (52.7 ± 4.6%), respectively. The mean FAZ area and perimeter were 0.32 ± 0.11 mm2 (95% CI, 0.17-0.51 mm) and 2.14 ± 0.38 mm (95% CI, 1.54-2.75 mm), respectively. In the multivariable regression analysis, female sex was associated with higher SVD (β = 1.25, P ≤ 0.001) and DVD (β = 0.75, P = 0.021). Older age (β = -0.67, P < 0.001) was associated with lower SVD, whereas longer axial length (β = -0.42, P = 0.003) was associated with lower DVD. Female sex, shorter axial length, and worse best-corrected distance visual acuity were associated with a larger FAZ area. No association of a range of systemic parameters with vessel density was found.
CONCLUSIONS: This study provided normative macular vasculature parameters in an adult Asian population, which may serve as reference values for quantitative interpretation of OCTA data in normal and disease states.
METHODS: A retrospective review of all the neonates and infants (<1 year) was conducted from the CAF registry for CAF treatment. The CAF type (proximal or distal), size, treatment method, and follow-up angiography were reviewed to assess outcomes and coronary remodeling.
RESULTS: Forty-eight patients were included from 20 centers. Of these, 30 were proximal and 18 had distal CAF; 39 were large, 7 medium, and 2 had small CAF. The median age and weight was 0.16 years (0.01-1) and 4.2 kg (1.7-10.6). Heart failure was noted in 28 of 48 (58%) patients. Transcatheter closure was performed in 24, surgical closure in 18, and 6 were observed medically. Procedural success was 92% and 94 % for transcatheter closure and surgical closure, respectively. Follow-up data were obtained in 34 of 48 (70%) at a median of 2.9 (0.1-18) years. Angiography to assess remodeling was available in 20 of 48 (41%). I. Optimal remodeling (n=10, 7 proximal and 3 distal CAF). II. Suboptimal remodeling (n=7) included (A) symptomatic coronary thrombosis (n=2, distal CAF), (B) asymptomatic coronary thrombosis (n=3, 1 proximal and 2 distal CAF), and (C) partial thrombosis with residual cul-de-sac (n=1, proximal CAF) and vessel irregularity with stenosis (n=1, distal CAF). Finally, (III) persistent coronary artery dilation (n=4). Antiplatelets and anticoagulation were used in 31 and 7 patients post-closure, respectively. Overall, 7 of 10 (70%) with proximal CAF had optimal remodeling, but 5 of 11 (45%) with distal CAF had suboptimal remodeling. Only 1 of 7 patients with suboptimal remodeling were on anticoagulation.
CONCLUSIONS: Neonates/infants with hemodynamically significant CAF can be treated by transcatheter or surgical closure with excellent procedural success. Patients with distal CAF are at higher risk for suboptimal remodeling. Postclosure anticoagulation and follow-up coronary anatomic evaluation are warranted.
DESIGN: Prospective cross-sectional study.
METHODS: Consecutive CSC patients were recruited from retina clinic. The reference standard for CNV was determined by interpretation of multimodal imaging with OCTA, structural OCT line scan, fluorescein angiography (FA), indocyanine green angiography (ICGA), ultra-widefield fundus photography and fundus autofluorescence (FAF). Two independent masked graders examined OCTA without FA and ICGA to diagnose CNV. Univariate and multivariate analyses were performed to evaluate factors associated with CNV.
RESULTS: CNV was detected in 69 eyes in 64 out of 277 CSC patients according to reference standard. The two masked graders who examined OCTA had sensitivity of 81.2% (95% Confidence Interval [CI], 71.9%-90.4%) and 78.3% (95% CI, 68.5%-88.0%), specificity of 97.3% (95% CI, 95.9%-98.8%) and 96.2% (95% CI, 94.5%-98.0%), positive predictive values of 82.4% (95% CI, 73.3%-91.4%) and 76.1% (95% CI, 66.1%-86.0%), and negative predictive values of 97.1% (95% CI, 95.6%-98.7%) and 96.7% (95% CI, 95.0%-98.3%). Their mean area under the receiver operating characteristic curve (AUC) was 0.88 with good agreement (Kappa coefficient 0.80 [95% CI, 0.72-0.89]). Flat irregular pigment epithelial detachment on structural OCT, neovascular network on OCTA and ill-defined late leakage on FA significantly correlated with CNV in CSC from multiple regression (P < 0.001, P < 0.001 and P = 0.005, respectively).
CONCLUSIONS: There is discordance between OCTA and multimodal imaging in diagnosing CNV in CSC. This study demonstrated the caveats in OCTA interpretation, such as small extrafoveal lesions and retinal pigment epithelial alterations. Comprehensive interpretation of OCTA with dye angiography and structural OCT is recommended.