Displaying publications 61 - 80 of 98 in total

Abstract:
Sort:
  1. bin Long I, Singh HJ, Rao GJ
    J. Pharmacol. Sci., 2005 Nov;99(3):272-6.
    PMID: 16293937
    The effects of indomethacin and nabumetone on urine and electrolyte excretion in conscious rats were examined. Male Sprague-Dawley rats were housed individually for a five-week duration, consisting of acclimatization, control, experimental, and recovery phases. During the experimental phase, rats were given either indomethacin (1.5 mg . kg(-1) body weight . day(-1) in 0.5 ml saline, n = 10), nabumetone (15 mg . kg(-1) body weight . day(-1) 0.5 ml saline, n = 10), or 0.5 ml saline alone (n = 10) for a period of two weeks. Water and food intake, body weight, urine output, and electrolyte excretions were estimated. Data were analyzed using two-way ANOVA. Urine output in the indomethacin- and nabumetone-treated groups was not different from the controls, but was significantly different between the drug-treated groups (P<0.01). Sodium, potassium, calcium, and magnesium excretions were not different between nabumetone-treated and control rats. However, sodium and potassium excretion was significantly lower in rats receiving indomethacin when compared to the control rats. Calcium and magnesium outputs, although did not differ from the controls, nevertheless decreased significantly with indomethacin (P<0.01). It appears that indomethacin and nabumetone when given at maximum human therapeutic doses may affect urine and electrolyte output in conscious rats.
    Matched MeSH terms: Cyclooxygenase 2/drug effects
  2. Chien Yi K, Anna Pick Kiong L, Ying Pei W, Rhun Yian K, Sobri H
    J Tradit Chin Med, 2021 04;41(2):185-193.
    PMID: 33825397
    OBJECTIVE: To investigate the anti-neuroinflammatory properties of Panax ginseng (P. ginseng) root by measuring the levels of nitric oxide (NO), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in lipopolysaccharide (LPS)-stimulated BV2 microglia cells.

    METHODS: Maximal non-toxic dose (MNTD) of methanol extract of P. ginseng root culture on BV2 microglia cells was first determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, followed by treatment and LPS stimulation of cells, and the measurement of NO using Griess assay and TNF-α, IL-6, and IL-10 using ELISA assay.

    RESULTS: The MNTD of P. ginseng root extract was determined to be (587 ± 57) µg/mL. Following that, NO and IL-6 levels were found to be insignificantly reduced by 6.88% and 0.14% respectively in stimulated cells upon treatment with MNTD. Treatment with MNTD yielded similar insignificant result, with only a reduction of 3.58% and 0.08% in NO and IL-6 levels respectively. However, TNF-α and IL-10 levels were significantly downregulated by 15.64% and 34.96% respectively upon treatment with P. ginseng root extract at MNTD.

    CONCLUSION: Methanol extract of P. ginseng root culture did not show any significant anti-inflammatory effects on NO and IL-6 levels, but might potentially possess both anti-neuroinflammatory and pro-neuroinflammatory properties through the downregulation of TNF-α and IL-10 respectively.

    Matched MeSH terms: Cyclooxygenase 2/genetics; Cyclooxygenase 2/immunology
  3. Mani V, Jaafar SM, Azahan NSM, Ramasamy K, Lim SM, Ming LC, et al.
    Life Sci, 2017 Jul 01;180:23-35.
    PMID: 28501482 DOI: 10.1016/j.lfs.2017.05.013
    AIM: The present study is aimed to investigate the ability of ciproxifan, a histamine H3 receptor antagonist to inhibit β-amyloid (Aβ)-induced neurotoxicity in SK-N-SH cells and APP transgenic mouse model.

    MATERIALS AND METHODS: In vitro studies was designed to evaluate the neuroprotective effects of ciproxifan in Aβ25-35 - induced SK-N-SH cells. For the in vivo study, ciproxifan (1 and 3mg/kg, i.p.) was administrated to transgenic mice for 15days and behaviour was assessed using the radial arm maze (RAM). Brain tissues were collected to measure Aβ levels (Aβ1-40 and Aβ1-42), acetylcholine (ACh), acetylcholinesterase (AChE), nitric oxide (NO), lipid peroxidation (LPO), antioxidant activities, cyclooxygenases (COX) and cytokines (IL-1α, IL-1β and IL-6), while plasma was collected to measure TGF-1β.

    RESULTS: The in vitro studies demonstrated neuroprotective effect of ciproxifan by increasing cell viability and inhibiting reactive oxygen species (ROS) in Aβ25-35-induced SK-N-SH cells. Ciproxifan significantly improved the behavioural parameters in RAM. Ciproxifan however, did not alter the Aβ levels in APP transgenic mice. Ciproxifan increased ACh and showed anti-oxidant properties by reducing NO and LPO levels as well as enhancing antioxidant levels. The neuroinflammatory analysis showed that ciproxifan reduced both COX-1 and COX-2 activities, decreased the level of pro-inflammatory cytokines IL-1α, IL-1β and IL-6 and increased the level of anti-inflammatory cytokine TGF-1β.

    CONCLUSION: This present study provides scientific evidence of the use of ciproxifan via antioxidant and cholinergic pathways in the management of AD.

    Matched MeSH terms: Cyclooxygenase 2
  4. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: Cyclooxygenase 2/genetics*; Cyclooxygenase 2/immunology
  5. Ngeow, W.C., Ong, S.T.
    Malaysian Dental Journal, 2008;29(2):84-93.
    MyJurnal
    The primary obligation and ultimate responsibility of a dental surgeon is not only to restore aesthetic and function, but also to relieve pain which originates from dental pathology or surgical procedures performed. Post operative dental pain is mainly of inflammatory origin. Common traditional oral analgesics, namely salicylates, paracetamol and non-steroidal anti-inflammatory drugs have been the drugs of choice, but are increasingly being superseded by newer designer analgesics, the cyclooxygenase-2 (COX-2) inhibitors. This article reviews the advantages and disadvantages of prescribing common traditional oral analgesics as well as exploring the potential use of COX-2 inhibitors as an alternative to these analgesics for the control of post operative pain in dentistry.
    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  6. Jasmin Kaur Jagender Singh, Ching Ching Ng, Nor Adinar Baharuddin, Syarida Hasnur Safii, Rathna Devi Vaithilingam
    MyJurnal
    Introduction:PTGS2 and DEFB1 single nucleotide polymorphisms (SNP) have been validated to be associated with chronic periodontitis (CP) in European, Japanese and Chinese populations. Polymorphisms of these genes play a role in the pathogenesis of CP. Thus far, no study has been done on the Malay ethnic group. Hence, this study assessed the allele and genotype frequencies of PTGS2 and DEFB1 variants in subjects with chronic periodontitis and healthy individuals in Malaysian Malays. Methods: Malay CP subjects and periodontally-healthy controls were obtained from Malaysian Periodontal Database and Biobanking system (MPDBS) for this case-control study. Diagnosis for cas-es was based on case definition by Eke et al (2012). DNA samples were genotyped for 4 candidate SNPs, rs689466, rs5275, rs20417 (PTGS2) and rs1047031 (DEFB1). Genotyping was carried out using Taqman genotyping method. The association between SNPs and study groups were assessed using logistic regression analysis. Results: DNA sam-ples from 140 individuals, 76 CP cases and 64 healthy controls were genotyped. Logistic regression results demon-strated that rs689466 for PTGS2 gene was associated with CP susceptibility in the Malay study group (p=0.03; OR: 1.80; 95% CI=1.05-3.07). The dominant and additive model test showed significant association with rs689466 (C/T) (pdominant-adjusted=0.02; OR: 2.22; 95% CI=1.11-4.43;padditive-adjusted=0.03; OR:1.85; 95% CI=1.07-3.19) after controlling for age and smoking. However, no significant association with CP was observed with other SNPs. Conclusion: The results suggest that rs689466 of PTGS2 gene may contribute to CP susceptibility in Malaysian Malay population in our preliminary study.
    Matched MeSH terms: Cyclooxygenase 2
  7. Eng Zhuan Ban, Munn Sann Lye, Crystale Siew Ying Lim, Hejar Abdul Rahman, Pei Pei Chong
    MyJurnal
    Cancers of the oral cavity are more common worldwide in men than in women, and the same is true for cancer of the nasopharynx region, whereby nasopharyngeal carcinoma (NPC) incidence rate in men is 2.5 times that in women. Different risk factors, including environmental, lifestyle and genetic factors, come into play in terms of contributing towards the development of these cancers. The increased incidence of oral cancers in developed countries in recent years are attributable to rises in the consumption of tobacco and/or alcoholic beverages, in addition to the traditional practice of betel quid chewing in some communities. As for NPC, the risk factors include male sex, overconsump-tion of preserved salted fish and smoking. In terms of etiology due to microbial agents, the human papillomavirus (HPV) has been linked with oral cancers whereby HPV DNA was found in about 2 out of 3 oropharyngeal cancer cases. In contrast, the Epstein-Barr virus (EBV) has been closely associated with most cases of NPC. Specifically, NPC is categorized by the WHO into two main histological types—keratinizing squamous cell carcinoma (type I) and non-keratinizing squamous cell carcinoma (types II and III), and it is the non-keratinizing type (types II and III) which has very high percentage of EBV DNA. The oncogenicity of these viruses had been studied extensively, and they are now recognized as crucial early triggers of NPC and oral cancers. Genetic factors can also predispose a person to the development of either oral cancer or NPC. Certain HLA class I alleles are associated with increased risks for NPC. Genetic polymorphisms in genes encoding the cytochrome P450 enzymes and glutathione S-transferase had been identified as potential risk factors for NPC. In our studies, we had shown that polymorphism in the XPD gene which encodes a DNA helicase enzyme involved in nucleotide excision repair was linked to risk for NPC in Malaysian population. We also found that the combination of CGC allele from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC. In oral cancers, studies by other researchers revealed that gene polymorphisms in HOTAIR gene and the interaction with betel quid chewing are linked to oral cancer risk. Specific COX-2 gene polymorphisms were also found to be associated with increased risk for oral cancer development and progression. Taken together, these studies show a strong correlation between viral etiology combined with the indi-vidual’s genetic background coupled with certain risky lifestyle behaviours which together contribute towards the development of oral cancer and NPC.
    Matched MeSH terms: Cyclooxygenase 2
  8. Arumugam M, Azhar MZ
    MyJurnal
    Introduction: The Cyclooxygenase-2 (COX-2) enzyme is responsible for the synthesis of prostaglandin which is responsible for inflammation and pain. Celecoxib a cyclooxygenase-2 inhibitor was first used as a non-steroidal anti-inflammatory drug in 1999. Celecoxib is as effective as NSAIDs but causes less ulceration of the gastrointestinal tract, hence it is commonly used. It has been widely used in patients with osteoarthritis and rheumatoid arthritis. We present 3 cases of temporary psychiatric disorders associated with consumption of celecoxib, two of the patients presented with auditory hallucinations while one was diagnosed to be having depression. None had pre-existing psychiatric disorders or consumed alcohol or substance of abuse. All 3 patients recovered from their temporary psychiatric disorders after stopping celecoxib. Discussion: It is important to be aware of the psychiatric side effects when prescribing the drug for prolonged periods.
    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  9. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  10. Tan WS, Arulselvan P, Karthivashan G, Fakurazi S
    Mediators Inflamm, 2015;2015:720171.
    PMID: 26609199 DOI: 10.1155/2015/720171
    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.
    Matched MeSH terms: Cyclooxygenase 2
  11. Abdulamir AS, Hafidh RR, Bakar FA
    Mol. Cancer, 2010;9:249.
    PMID: 20846456 DOI: 10.1186/1476-4598-9-249
    Colorectal cancer (CRC) has long been associated with bacteremia and/or endocarditis by Streptococcus gallolyticus member bacteria (SGMB) but the direct colonization of SGMB along with its molecular carcinogenic role, if any, has not been investigated. We assessed the colonization of SGMB in CRC patients with history of bacteremia (CRC-w/bac) and without history of bacteremia (CRC-wo/bac) by isolating SGMB from feces, mucosal surfaces of colorectum, and colorectal tissues and detecting SGMB DNA, via PCR and in situ hybridization (ISH) assays targeting SodA gene in colorectal tissues. Moreover, mRNA of IL1, IL-8, COX-2, IFN-γ, c-Myc, and Bcl-2 in colorectal tissues of studied groups was assessed via ISH and RT-PCR.
    Matched MeSH terms: Cyclooxygenase 2/genetics*
  12. Israf DA, Khaizurin TA, Syahida A, Lajis NH, Khozirah S
    Mol Immunol, 2007 Feb;44(5):673-9.
    PMID: 16777230
    Cardamonin, a chalcone isolated from the fruits of a local plant Alpinia rafflesiana, has demonstrated anti-inflammatory activity in cellular models of inflammation. In this report, we evaluated the ability of cardamonin to suppress both NO and PGE2 synthesis, iNOS and COX-2 expression and enzymatic activity, and key molecules in the NF-kappaB pathway in order to determine its molecular target. Cardamonin suppressed the production of NO and PGE2 in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells. This inhibition was demonstrated to be caused by a dose-dependent down-regulation of both inducible enzymes, iNOS and COX-2, without direct effect upon iNOS or COX-2 enzyme activity. Subsequently we determined that the inhibition of inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation and degradation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation. We conclude that cardamonin is a potential anti-inflammatory drug lead that targets the NF-kappaB pathway.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/pharmacology*
  13. Lee KH, Abas F, Alitheen NB, Shaari K, Lajis NH, Ahmad S
    Molecules, 2011 Nov 23;16(11):9728-38.
    PMID: 22113581 DOI: 10.3390/molecules16119728
    Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE(2 )synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE(2) synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC(50) value of 47.33 ± 1.00 µM. Interestingly, the PGE(2) inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE(2) synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/chemical synthesis; Cyclooxygenase 2 Inhibitors/pharmacology*
  14. Lee SY, Wong WF, Dong J, Cheng KK
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825228 DOI: 10.3390/molecules25173783
    Macrophage activation is a key event that triggers inflammatory response. The activation is accompanied by metabolic shift such as upregulated glucose metabolism. There are accumulating evidences showing the anti-inflammatory activity of Momordica charantia. However, the effects of M. charantia on inflammatory response and glucose metabolism in activated macrophages have not been fully established. The present study aimed to examine the effect of M. charantia in modulating lipopolysaccharide (LPS)-induced inflammation and perturbed glucose metabolism in RAW264.7 murine macrophages. The results showed that LPS-induced NF-κB (p65) nuclear translocation was inhibited by M. charantia treatment. In addition, M. charantia was found to reduce the expression of inflammatory genes including IL6, TNF-α, IL1β, COX2, iNOS, and IL10 in LPS-treated macrophages. Furthermore, the data showed that M. charantia reduced the expression of GLUT1 and HK2 genes and lactate production (-28%), resulting in suppression of glycolysis. Notably, its effect on GLUT1 gene expression was found to be independent of LPS-induced inflammation. A further experiment also indicated that the bioactivities of M. charantia may be attributed to its key bioactive compound, charantin. Taken together, the study provided supporting evidences showing the potential of M. charantia for the treatment of inflammatory disorders.
    Matched MeSH terms: Cyclooxygenase 2/biosynthesis
  15. Nordin NA, Lawai V, Ngaini Z, Abd Halim AN, Hwang SS, Linton RE, et al.
    Nat Prod Res, 2020 Jun;34(11):1505-1514.
    PMID: 30507306 DOI: 10.1080/14786419.2018.1517120
    In searching for drugs from natural product scaffolds has gained interest among researchers. In this study, a series of twelve halogenated thiourea (ATX 1-12)via chemical modification of aspirin (a natural product derivative) and evaluated for cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines, HK-1 via MTS-based colorimetric assay. The cytotoxicity studies demonstrated that halogens at meta position of ATX showed promising activity against HK-1 cells (IC50 value ≤15 µM) in comparison to cisplatin, a positive cytotoxic drug (IC50 value =8.9 ± 1.9 µM). ATX 11, bearing iodine at meta position, showed robust cytotoxicity against HK-1 cells with an IC50 value of 4.7 ± 0.7 µM. Molecular docking interactions between ATX 11 and cyclooxygenase-2 demonstrated a robust binding affinity value of -8.1 kcal/mol as compared to aspirin's binding affinity value of -6.4 kcal/mol. The findings represent a promising lead molecule from natural product with excellent cytotoxic activity against NPC cell lines.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  16. Wu YX, Kim YJ, Kwon TH, Tan CP, Son KH, Kim T
    Nat Prod Res, 2020 Jun;34(12):1786-1790.
    PMID: 30470128 DOI: 10.1080/14786419.2018.1527832
    Mulberry (Morus alba L.) root bark (MRB) was extracted using methanol and the extracts were subjected to tests of anti-inflammatory effects. The ethyl acetate fraction demonstrated the best anti-inflammatory effects. Purified compounds, sanggenon B, albanol B and sanggenon D, showed inhibitory effects on NO production in LPS-stimulated RAW264.7 cells and albanol B demonstrated the best anti-inflammatory effects. Regarding the underlying molecular mechanisms, further investigations showed that treatments with Albanol B reduced production of pro-inflammatory cytokines and decreased expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results would contribute to development of novel anti-inflammatory drugs from MRB.
    Matched MeSH terms: Cyclooxygenase 2 Inhibitors/isolation & purification; Cyclooxygenase 2 Inhibitors/pharmacology
  17. Kuo X, Herr DR, Ong WY
    Neuromolecular Med, 2021 03;23(1):176-183.
    PMID: 33085066 DOI: 10.1007/s12017-020-08621-3
    Clinacanthus nutans (Lindau) (C. nutans) has diverse uses in traditional herbal medicine for treating skin rashes, insect and snake bites, lesions caused by herpes simplex virus, diabetes mellitus and gout in Singapore, Malaysia, Indonesia, Thailand and China. We previously showed that C. nutans has the ability to modulate the induction of cytosolic phospholipase A2 (cPLA2) expression in SH-SY5Y cells through the inhibition of histone deacetylases (HDACs). In the current study, we elucidated the effect of C. nutans on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induced a dose-dependent loss of hCMEC/D3 cell viability, and such damage was significantly inhibited by C. nutans leaf extracts but not stem extracts. 7KC also induced a marked increase in mRNA expression of pro-inflammatory cytokines, IL-1β IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX-2) in brain endothelial cells, and these increases were significantly inhibited by C. nutans leaf but not stem extracts. HPLC analyses showed that leaf extracts have a markedly different chemical profile compared to stem extracts, which might explain their different effects in counteracting 7KC-induced inflammation. Further study is necessary to identify the putative phytochemicals in C. nutans leaves that have anti-inflammatory properties.
    Matched MeSH terms: Cyclooxygenase 2/biosynthesis; Cyclooxygenase 2/genetics
  18. Latifah SY, Armania N, Tze TH, Azhar Y, Nordiana AH, Norazalina S, et al.
    Nutr J, 2010 Mar 26;9:16.
    PMID: 20346115 DOI: 10.1186/1475-2891-9-16
    Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of beta-catenin and COX-2 reduced significantly (p < 0.05) in all the groups treated with GBR (G2, G3 and G4) compared to the control group (G1). Spearman rank correlation test showed significant positive linear relationship between total beta-catenin and COX-2 score (Spearman's rho = 0.616, p = 0.0001). It is demonstrated that GBR inhibits the development of total number of ACF and AC, and multicrypt of ACF, reduces the expression of beta-catenin and COX-2, and thus can be a promising dietary supplement in prevention of colon cancer.
    Matched MeSH terms: Cyclooxygenase 2/analysis*
  19. Veettil SK, Teerawattanapong N, Ching SM, Lim KG, Saokaew S, Phisalprapa P, et al.
    Onco Targets Ther, 2017;10:2689-2700.
    PMID: 28579807 DOI: 10.2147/OTT.S127335
    BACKGROUND: Protective effects of several chemopreventive agents (CPAs) against colorectal adenomas have been well documented in randomized controlled trials (RCTs); however, there is uncertainty regarding which agents are the most effective.

    METHODS: We searched for RCTs published up until September 2016. Retrieved trials were evaluated using risk of bias. We performed both pairwise analysis and network meta-analysis (NMA) of RCTs to compare the effects of CPAs on the recurrence of colorectal adenomas (primary outcome). Using NMA, we ranked CPAs based on efficacy.

    RESULTS: We identified 20 eligible RCTs enrolling 12,625 participants with a history of colorectal cancer or adenomas who were randomly assigned to receive either a placebo or one of 12 interventions. NMA using all trials demonstrated that celecoxib 800 mg/day (relative risk [RR] 0.61, 95% confidence interval [CI] 0.45-0.83), celecoxib 400 mg/day (RR 0.70, 95% CI 0.55-0.87), low-dose aspirin (RR 0.75, 95% CI 0.59-0.96) and calcium (RR 0.81, 95% CI 0.69-0.96) were significantly associated with a reduction in the recurrence of any adenomas. NMA results were consistent with those from pairwise meta-analysis. The evidence indicated a high (celecoxib), moderate (low-dose aspirin) and low (calcium) Grading of Recommendations, Assessment, Development and Evaluation (GRADE) quality. NMA ranking showed that celecoxib 800 mg/day and celecoxib 400 mg/day were the best CPAs, followed by low-dose aspirin and calcium. Considering advanced adenoma recurrence, only celecoxib 800 mg/day and celecoxib 400 mg/day were demonstrated to have a protective effect (RR 0.37, 95% CI 0.27-0.52 vs RR 0.48, 95% CI 0.38-0.60, respectively).

    CONCLUSION: The available evidence from NMA suggests that celecoxib is more effective in reducing the risk of recurrence of colorectal adenomas, followed by low-dose aspirin and calcium. Since cyclooxygenase-2 (COX-2) inhibitors (eg, celecoxib) are associated with important cardiovascular events and gastrointestinal harms, more attention is warranted toward CPAs with a favorable benefit-to-risk ratio, such as low-dose aspirin and calcium.

    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  20. Abdul Rahman M, Tan ML, Johnson SP, Hollows RJ, Chai WL, Mansell JP, et al.
    PeerJ, 2020;8:e10328.
    PMID: 33240646 DOI: 10.7717/peerj.10328
    Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide and accounts for 300,000 new cases yearly. The five-year survival rate is approximately 50% and the major challenges to improving patient prognosis include late presentation, treatment resistance, second primary tumours and the lack of targeted therapies. Therefore, there is a compelling need to develop novel therapeutic strategies. In this study, we have examined the effect of lysophosphatidic acid (LPA) on OSCC cell migration, invasion and response to radiation, and investigated the contribution of cyclooxygenase-2 (COX-2) in mediating the tumour promoting effects of LPA. Using the TCGA data set, we show that the expression of the lipid phosphate phosphatases (LPP), LPP1 and LPP3, was significantly down-regulated in OSCC tissues. There was no significant difference in the expression of the ENPP2 gene, which encodes for the enzyme autotaxin (ATX) that produces LPA, between OSCCs and control tissues but ENPP2 levels were elevated in a subgroup of OSCCs. To explore the phenotypic effects of LPA, we treated OSCC cell lines with LPA and showed that the lipid enhanced migration and invasion as well as suppressed the response of the cells to irradiation. We also show that LPA increased COX-2 mRNA and protein levels in OSCC cell lines and inhibition of COX-2 activity with the COX-2 inhibitor, NS398, attenuated LPA-induced OSCC cell migration. Collectively, our data show for the first time that COX-2 mediates some of the pro-tumorigenic effects of LPA in OSCC and identifies the ATX-LPP-LPA-COX-2 pathway as a potential therapeutic target for this disease.
    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links