Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.
Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.
Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.
MATERIALS AND METHODS: The effects of mitragynine on the mRNA and protein expression of COX-1 and COX-2 and the production of prostaglandin E(2) (PGE(2)) were investigated in LPS-treated RAW264.7 macrophage cells. Quantitative RT-PCR was used to assess the mRNA expression of COX-1 and COX-2. Protein expression of COX-1 and COX-2 were assessed using Western blot analysis and the level of PGE(2) production was quantified using Parameter™ PGE(2) Assay (R&D Systems).
RESULTS: Mitragynine produced a significant inhibition on the mRNA expression of COX-2 induced by LPS, in a dose dependent manner and this was followed by the reduction of PGE(2) production. On the other hand, the effects of mitragynine on COX-1 mRNA expression were found to be insignificant as compared to the control cells. However, the effect of mitragynine on COX-1 protein expression is dependent on concentration, with higher concentration of mitragynine producing a further reduction of COX-1 expression in LPS-treated cells.
CONCLUSIONS: These findings suggest that mitragynine suppressed PGE(2) production by inhibiting COX-2 expression in LPS-stimulated RAW264.7 macrophage cells. Mitragynine may be useful for the treatment of inflammatory conditions.
AIM OF STUDY: This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells.
MATERIALS AND METHODS: The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW.
RESULTS: Our results revealed that intraperitoneal TRF-injection (90 μg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 μg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization.
CONCLUSION: Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.
METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). We performed population genotyping on n = 2,880 individuals from the SMCSGES cohort to assess the associations of SNPs in the AA pathway genes with asthma and allergic rhinitis (AR). Spirometry assessments were performed to identify associations between SNPs and lung function among n = 74 pediatric asthmatic patients from the same cohort. Allergy-associated SNPs were functionally characterized using in vitro promoter luciferase assay, along with DNA methylome and transcriptome data of n = 237 peripheral blood mononuclear cell (PBMC) samples collected from a subset of the SMCSGES cohort.
RESULTS: Genetic association analysis showed 5 tag-SNPs from 4 AA pathway genes were significantly associated with asthma (rs689466 at COX2, rs35744894 at hematopoietic PGD2 synthase (HPGDS), rs11097414 at HPGDS, rs7167 at CRTH2, and rs5758 at TBXA2R, p < 0.05), whereas 3 tag-SNPs from HPGDS (rs35744894, rs11097414, and rs11097411) and 2 tag-SNPs from PTGDR (rs8019916 and rs41312470) were significantly associated with AR (p < 0.05). The asthma-associated rs689466 regulates COX2 promoter activity and associates with COX2 mRNA expression in PBMC. The allergy-associated rs1344612 was significantly associated with poorer lung function, increased risks of asthma and AR, and increased HPGDS promoter activity. The allergy-associated rs8019916 regulates PTGDR promoter activity and DNA methylation levels of cg23022053 and cg18369034 in PBMC. The asthma-associated rs7167 affects CRTH2 expression by regulating the methylation level of cg19192256 in PBMC.
CONCLUSIONS: The present study identified multiple allergy-associated SNPs that modulate the transcript expressions of key genes in the AA pathway. The development of a "personalized medicine" approach with consideration of genetic influences on the AA pathway may hopefully result in efficacious strategies to manage and treat allergic diseases.
MATERIALS AND METHODS: Thirty-six clear cell RCC cases were selected. There were 21 (58.3%) men and 15 (41.7%) women with median age of 56.6 years (range: 16-74 years). Chinese constituted 16 (44.4%) of the cases; Malays 14 (38.9%) cases and Indian 6 (16.7%) cases. There were 6 (16.7%) grade 1, 20 (55.6%) grade 2, 10 (27.8%) grade 3 and none was grade 4. The paraffin embedded tissues were cut at 4 μm thick and stained with COX-2 monoclonal antibody.
RESULTS: Eighteen (50%) of the RCC cases were immunopositive, of which all showed strong positivity. The immunopositive cases showed cytoplasmic membrane positivity.
CONCLUSION: There was no significant association between COX-2 expression with grade, age, sex and ethnicity (p=0.457, p=0.054, p=0.389 and p=0.568 respectively). Strong positivity of COX-2 suggest that COX-2 may play a role in cell proliferation and in carcinogenesis.