Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Ong HT, Ong LM, Tan TE, Chean KY
    Med J Malaysia, 2013 Apr;68(2):189-94.
    PMID: 23629578 MyJurnal
    The clycoxygenase (COX) enzyme forms locally active prostaglandins responsible for producing inflammation and pain. Classical non-steroidal anti-inflammatory drugs (NSAID) inhibit the COX-2 enzyme that produces inflammatory prostaglandins as well as the COX-1 enzyme that produces gastric mucosa protecting prostaglandins. By specifically inhibiting only the COX-2 enzyme, coxibs thus reduce pain but do not damage the gastric mucosa. However, COX-2 at the vascular endothelium produces antithrombotic prostaglandins, and so by inhibiting COX-2 enzyme, the coxibs promote thrombosis. Rofecoxib and valdecoxib have been withdrawn because of the adverse cardiovascular events they induce. Amongst presently available coxibs cardiovascular risk is highest with enterocoxib and lowest with celecoxib. NSAIDS also increase cardiovascular events, the risk is highest with diclofenac and lowest with naproxen. Paracetamol and corticosteroids induce hypertension, while steroids also adversely affect the heart from metabolic change as well as fluid retention. Aspirin is an anti-thrombotic agent because of its ability to inhibit the COX-1 enzyme that produces the pro-aggregatory thromboxane. However, it increases gastrointestinal bleeding, can promote fluid retention and is nephrotoxic, all of which may lead to adverse cardiovascular outcomes. Patients at especially high risk of cardiovascular events from analgesic use include the elderly, and those with heart failure, hypertension, rheumatoid arthritis, chronic renal disease, chronic obstructive airway disease and previous myocardial infarction, cerebrovascular disease or peripheral vascular disease. Adverse cardiovascular events can occur within a week of initiation of analgesic treatment.
    Matched MeSH terms: Cyclooxygenase 2 Inhibitors*
  2. Ngeow, W.C., Ong, S.T.
    Malaysian Dental Journal, 2008;29(2):84-93.
    MyJurnal
    The primary obligation and ultimate responsibility of a dental surgeon is not only to restore aesthetic and function, but also to relieve pain which originates from dental pathology or surgical procedures performed. Post operative dental pain is mainly of inflammatory origin. Common traditional oral analgesics, namely salicylates, paracetamol and non-steroidal anti-inflammatory drugs have been the drugs of choice, but are increasingly being superseded by newer designer analgesics, the cyclooxygenase-2 (COX-2) inhibitors. This article reviews the advantages and disadvantages of prescribing common traditional oral analgesics as well as exploring the potential use of COX-2 inhibitors as an alternative to these analgesics for the control of post operative pain in dentistry.
    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  3. Baharuddin KA, Rahman NH, Wahab SF, Halim NA, Ahmad R
    Int J Emerg Med, 2014;7(1):2.
    PMID: 24386899 DOI: 10.1186/1865-1380-7-2
    BACKGROUND: Parecoxib sodium is the first parenteral COX-2 inhibitor used for pain management licensed for postoperative pain. However, no study has assessed the usage of parecoxib for acute traumatic pain in the emergency department (ED). The objective of this study was to investigate a potential alternative analgesic agent in the ED by determining the mean reduction of pain score between acute traumatic pain patients who were administered with intravenous (IV) parecoxib sodium versus IV morphine sulfate. The onset of perceptible analgesic effect and side effects were also evaluated.
    METHODS: A randomized, double-blinded study comparing IV parecoxib 40 mg versus IV morphine at 0.10 mg/kg was conducted in adult patients presented with acute traumatic pain with numeric rating scale (NRS) of 6 or more within 6 hours of injury. Patients were randomized using a computer-generated randomization plan. Drug preparation and dispensing were performed by a pharmacist. Periodic assessment of blood pressure, pulse rate, oxygen saturation, and NRS were taken at 0, 5, 15, and 30 minute intervals after the administration of the study drug. The primary outcome was the reduction of NRS. Side effect and drug evaluation was conducted within 30 minutes of drug administration.
    RESULTS: There was no statistically significant difference in the reduction of mean NRS between patients in the IV parecoxib group or IV morphine group (P = 0.095). The mean NRS for patients treated with IV morphine were 7.1 at 0 minutes, 4.5 at 5 minutes, 3.1 at 15 minutes, and 2.0 at 30 minutes. Whereas mean NRS for patients who received IV parecoxib were 7.8 at 0 minutes, 5.7 at 5 minutes, 4.7 at 15 minutes, and 3.9 at 30 minutes. The onset of perceptible analgesic effects could be seen as early as 5 minutes. Dizziness was experienced in 42.9% of patients who received IV morphine compared to none in the parecoxib group.
    CONCLUSIONS: There was non-significant trend toward superiority of IV morphine over IV parecoxib. Looking at its effectiveness and the lack of opioid-related side-effects, the usage of IV parecoxib sodium may be extended further to a variety of cases in the ED.
    Study site: Emergency department, Hospital Universiti Sains Malaysia (HUSM)
    Matched MeSH terms: Cyclooxygenase 2 Inhibitors*
  4. Chan KY, Mohamad K, Ooi AJ, Imiyabir Z, Chung LY
    Fitoterapia, 2012 Jul;83(5):961-7.
    PMID: 22565147 DOI: 10.1016/j.fitote.2012.04.018
    Lipoxygenase (LOX)-inhibiting compounds from the leaves of Chisocheton polyandrus Merr. were isolated in this study using a bioactivity-guided fractionation technique. Two dammarane triterpenoids, dammara-20,24-dien-3-one (1) (IC(50)=0.69±0.07 μM) and 24-hydroxydammara-20,25-dien-3-one (2) (IC(50)=1.11±0.38 μM), were isolated and identified based on the soybean LOX assay. Dammara-20,24-dien-3-one (1) exhibited dual inhibition of both human 5-LOX (IC(50)=24.27±2.92 μM) and cyclooxygenase-2 (COX-2) (IC(50)=3.17±0.90 μM), whereas 24-hydroxydammara-20,25-dien-3-one (2) did not exhibit any significant inhibitory effects. This report is the first to detail the inhibition of LOX and COX by both C. polyandrus and its isolated compounds.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/isolation & purification; Cyclooxygenase 2 Inhibitors/pharmacology*
  5. Abdelgawad MA, Musa A, Almalki AH, Alzarea SI, Mostafa EM, Hegazy MM, et al.
    Drug Des Devel Ther, 2021;15:2325-2337.
    PMID: 34103896 DOI: 10.2147/DDDT.S310820
    Introduction: Epidermal growth factor receptor (EGFR) inhibition is an imperative therapeutic approach targeting various types of cancer including colorectal, lung, breast, and pancreatic cancer types. Moreover, cyclooxygenase-2 (COX-2) is frequently overexpressed in different types of cancers and has a role in the promotion of malignancy, apoptosis inhibition, and metastasis of tumor cells. Combination therapy has been emerged to improve the therapeutic benefit against cancer and curb intrinsic and acquired resistance.

    Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.

    Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.

    Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.

    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/chemical synthesis; Cyclooxygenase 2 Inhibitors/pharmacology*; Cyclooxygenase 2 Inhibitors/chemistry
  6. Abdul Rahman M, Tan ML, Johnson SP, Hollows RJ, Chai WL, Mansell JP, et al.
    PeerJ, 2020;8:e10328.
    PMID: 33240646 DOI: 10.7717/peerj.10328
    Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide and accounts for 300,000 new cases yearly. The five-year survival rate is approximately 50% and the major challenges to improving patient prognosis include late presentation, treatment resistance, second primary tumours and the lack of targeted therapies. Therefore, there is a compelling need to develop novel therapeutic strategies. In this study, we have examined the effect of lysophosphatidic acid (LPA) on OSCC cell migration, invasion and response to radiation, and investigated the contribution of cyclooxygenase-2 (COX-2) in mediating the tumour promoting effects of LPA. Using the TCGA data set, we show that the expression of the lipid phosphate phosphatases (LPP), LPP1 and LPP3, was significantly down-regulated in OSCC tissues. There was no significant difference in the expression of the ENPP2 gene, which encodes for the enzyme autotaxin (ATX) that produces LPA, between OSCCs and control tissues but ENPP2 levels were elevated in a subgroup of OSCCs. To explore the phenotypic effects of LPA, we treated OSCC cell lines with LPA and showed that the lipid enhanced migration and invasion as well as suppressed the response of the cells to irradiation. We also show that LPA increased COX-2 mRNA and protein levels in OSCC cell lines and inhibition of COX-2 activity with the COX-2 inhibitor, NS398, attenuated LPA-induced OSCC cell migration. Collectively, our data show for the first time that COX-2 mediates some of the pro-tumorigenic effects of LPA in OSCC and identifies the ATX-LPP-LPA-COX-2 pathway as a potential therapeutic target for this disease.
    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  7. Arumugam M, Azhar MZ
    MyJurnal
    Introduction: The Cyclooxygenase-2 (COX-2) enzyme is responsible for the synthesis of prostaglandin which is responsible for inflammation and pain. Celecoxib a cyclooxygenase-2 inhibitor was first used as a non-steroidal anti-inflammatory drug in 1999. Celecoxib is as effective as NSAIDs but causes less ulceration of the gastrointestinal tract, hence it is commonly used. It has been widely used in patients with osteoarthritis and rheumatoid arthritis. We present 3 cases of temporary psychiatric disorders associated with consumption of celecoxib, two of the patients presented with auditory hallucinations while one was diagnosed to be having depression. None had pre-existing psychiatric disorders or consumed alcohol or substance of abuse. All 3 patients recovered from their temporary psychiatric disorders after stopping celecoxib. Discussion: It is important to be aware of the psychiatric side effects when prescribing the drug for prolonged periods.
    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  8. Marutha Muthu AK, Cheah PL, Koh CC, Chew MF, Toh YF, Looi LM
    Malays J Pathol, 2017 Dec;39(3):251-255.
    PMID: 29279587 MyJurnal
    Over the years, adenocarcinoma (ADC), which has a worse prognosis than squamous cell carcinoma (SCC) of the cervix, has shown an increasing trend. Cyclooxygenase-2 (COX2) expression which has been associated with worse prognosis in several solid cancers was studied for its association with SCC and ADC of the cervix. 35 histologically re-confirmed SCC and 35 ADC were immunohistochemically stained for COX2 using a mouse monoclonal antibody to COX2 (1:100; Dako: Clone CX-294) on a Ventana Benchmark XT. The histoscore was computed as intensity of staining, semi-quantitated on a scale of 0-3 with 0 = negative, 1 = weak, 2 = moderate and 3 = strong staining intensity; multiplied by percentage of immunopositivity on a scale of 0-4 with 0 = <1%, 1 = 1-25%, 2 = 26-50%, 3 = 51-75% and 4 = ≥75% of immunopositive tumour cells. Histoscore 1-3/12 was considered as low and ≥4/12 as high COX2 expression. SCC affected Chinese more than Malays, while Malays had more ADC (p = 0.032). Mean age at presentation of SCC (57.5 years) was about a decade later than ADC at 47.9 years (p = 0.002). 30/35 (85.7%) of SCC and 34/35 (97.1%) of ADC expressed COX2. Histoscores of ADC (median = 4.0, IQR = 3.0-6.0) was significantly higher (p = 0.014) than those of SCC (median = 3.0, IQR = 2.0-3.0). High histoscores (≥4/12) were more frequent in ADC (55.9%) compared with SCC (26.7%) (p = 0.018), implicating COX2, either directly or indirectly, as a possible player in influencing the poorer outcome of ADC compared with SCC.
    Matched MeSH terms: Cyclooxygenase 2/analysis; Cyclooxygenase 2/biosynthesis*
  9. Faizal AM, Elias MH, Jin NM, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2024;15:1274376.
    PMID: 38524634 DOI: 10.3389/fendo.2024.1274376
    The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.
    Matched MeSH terms: Cyclooxygenase 2/genetics; Cyclooxygenase 2/metabolism
  10. Lee KH, Abas F, Alitheen NB, Shaari K, Lajis NH, Ahmad S
    Molecules, 2011 Nov 23;16(11):9728-38.
    PMID: 22113581 DOI: 10.3390/molecules16119728
    Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE(2 )synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE(2) synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC(50) value of 47.33 ± 1.00 µM. Interestingly, the PGE(2) inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE(2) synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/chemical synthesis; Cyclooxygenase 2 Inhibitors/pharmacology*
  11. Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM
    J Ethnopharmacol, 2011 Jun 14;136(1):75-82.
    PMID: 21513785 DOI: 10.1016/j.jep.2011.04.011
    ETHNOPHARMACOLOGICAL RELEVANCE: [corrected] Mitragyna speciosa Korth (Rubiaceae) is one of the medicinal plants used traditionally to treat various types of diseases especially in Thailand and Malaysia. Its anti-inflammatory and analgesic properties in its crude form are well documented. In this study, the cellular mechanism involved in the anti-inflammatory effects of mitragynine, the major bioactive constituent, was investigated.

    MATERIALS AND METHODS: The effects of mitragynine on the mRNA and protein expression of COX-1 and COX-2 and the production of prostaglandin E(2) (PGE(2)) were investigated in LPS-treated RAW264.7 macrophage cells. Quantitative RT-PCR was used to assess the mRNA expression of COX-1 and COX-2. Protein expression of COX-1 and COX-2 were assessed using Western blot analysis and the level of PGE(2) production was quantified using Parameter™ PGE(2) Assay (R&D Systems).

    RESULTS: Mitragynine produced a significant inhibition on the mRNA expression of COX-2 induced by LPS, in a dose dependent manner and this was followed by the reduction of PGE(2) production. On the other hand, the effects of mitragynine on COX-1 mRNA expression were found to be insignificant as compared to the control cells. However, the effect of mitragynine on COX-1 protein expression is dependent on concentration, with higher concentration of mitragynine producing a further reduction of COX-1 expression in LPS-treated cells.

    CONCLUSIONS: These findings suggest that mitragynine suppressed PGE(2) production by inhibiting COX-2 expression in LPS-stimulated RAW264.7 macrophage cells. Mitragynine may be useful for the treatment of inflammatory conditions.

    Matched MeSH terms: Cyclooxygenase 2/genetics; Cyclooxygenase 2/metabolism*; Cyclooxygenase 2 Inhibitors/pharmacology*
  12. Iqbal MA, Umar MI, Haque RA, Khadeer Ahamed MB, Asmawi MZ, Majid AM
    J Inorg Biochem, 2015 May;146:1-13.
    PMID: 25699476 DOI: 10.1016/j.jinorgbio.2015.02.001
    Chronic inflammation intensifies the risk for malignant neoplasm, indicating that curbing inflammation could be a valid strategy to prevent or cure cancer. Cancer and inflammation are inter-related diseases and many anti-inflammatory agents are also used in chemotherapy. Earlier, we have reported a series of novel ligands and respective binuclear Ag(I)-NHC complexes (NHC=N-heterocyclic carbene) with potential anticancer activity. In the present study, a newly synthesized salt (II) and respective Ag(I)-NHC complex (III) of comparable molecular framework were prepared for a further detailed study. Preliminarily, II and III were screened against HCT-116 and PC-3 cells, wherein III showed better results than II. Both the compounds showed negligible toxicity against normal CCD-18Co cells. In FAM-FLICA caspase assay, III remarkably induced caspase-3/7 in HCT-116 cells most probably by tumor necrosis factor-alpha (TNF-α) independent intrinsic pathway and significantly inhibited in vitro synthesis of cytokines, interleukin-1 (IL-1) and TNF-α in human macrophages (U937 cells). In a cell-free system, both the compounds inhibited cyclooxygenase (COX) activities, with III being more selective towards COX-2. The results revealed that III has strong antiproliferative property selectively against colorectal tumor cells which could be attributed to its pro-apoptotic and anti-inflammatory abilities.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/chemical synthesis*; Cyclooxygenase 2 Inhibitors/pharmacology
  13. Mohd Aluwi MF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, et al.
    Bioorg Med Chem Lett, 2016 05 15;26(10):2531-8.
    PMID: 27040659 DOI: 10.1016/j.bmcl.2016.03.092
    The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01μM and 8c, IC50=4.86μM) and U937 (8b, IC50=3.44μM and 8c, IC50=1.65μM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78μM and 15b, IC50=1.9μM while U937: 15a, IC50=0.95μM and 15b, IC50=0.92μM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-β, ERK, JNK2, p38α and p38β were performed using the conformation of 15a determined by single-crystal XRD.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2/chemistry; Cyclooxygenase 2 Inhibitors/chemical synthesis; Cyclooxygenase 2 Inhibitors/pharmacology; Cyclooxygenase 2 Inhibitors/chemistry
  14. Israf DA, Khaizurin TA, Syahida A, Lajis NH, Khozirah S
    Mol Immunol, 2007 Feb;44(5):673-9.
    PMID: 16777230
    Cardamonin, a chalcone isolated from the fruits of a local plant Alpinia rafflesiana, has demonstrated anti-inflammatory activity in cellular models of inflammation. In this report, we evaluated the ability of cardamonin to suppress both NO and PGE2 synthesis, iNOS and COX-2 expression and enzymatic activity, and key molecules in the NF-kappaB pathway in order to determine its molecular target. Cardamonin suppressed the production of NO and PGE2 in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells. This inhibition was demonstrated to be caused by a dose-dependent down-regulation of both inducible enzymes, iNOS and COX-2, without direct effect upon iNOS or COX-2 enzyme activity. Subsequently we determined that the inhibition of inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation and degradation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation. We conclude that cardamonin is a potential anti-inflammatory drug lead that targets the NF-kappaB pathway.
    Matched MeSH terms: Cyclooxygenase 2/metabolism; Cyclooxygenase 2 Inhibitors/pharmacology*
  15. Ng MJ, Kong BH, Teoh KH, Yap YH, Ng ST, Tan CS, et al.
    J Ethnopharmacol, 2023 Mar 25;304:115957.
    PMID: 36509254 DOI: 10.1016/j.jep.2022.115957
    ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus (Cooke) Ryvarden (also known as Tiger Milk mushroom, TMM), is a basidiomycete belonging to the Polyporaceae family. It has been documented to be used by traditional Chinese physicians and indigenous people in Southeast Asia to treat a variety of illnesses, such as gastritis, arthritis, and respiratory conditions, as well as to restore patients' physical well-being. TMM has also been used in folk medicine to treat cancer. For example, people from the indigenous Kensiu tribe of northeast Kedah (Malaysia) apply shredded TMM sclerotium mixed with water directly onto breast skin to treat breast cancer, while Chinese practitioners from Hong Kong, China prescribe TMM sclerotium as a treatment for liver cancer. L. rhinocerus has previously been demonstrated to possess selective anti-proliferative properties in vitro, however pre-clinical in vivo research has not yet been conducted.

    AIM OF STUDY: This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells.

    MATERIALS AND METHODS: The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW.

    RESULTS: Our results revealed that intraperitoneal TRF-injection (90 μg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 μg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization.

    CONCLUSION: Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.

    Matched MeSH terms: Cyclooxygenase 2
  16. Sio YY, Shi P, Matta SA, Fok YTR, Chiang WC, Say YH, et al.
    Int Arch Allergy Immunol, 2023;184(6):609-623.
    PMID: 37231900 DOI: 10.1159/000530393
    INTRODUCTION: The arachidonic acid (AA) pathway plays a crucial role in allergic inflammatory diseases; however, the functional roles of allergy-associated single nucleotide polymorphisms (SNPs) in this pathway remain incompletely illustrated.

    METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). We performed population genotyping on n = 2,880 individuals from the SMCSGES cohort to assess the associations of SNPs in the AA pathway genes with asthma and allergic rhinitis (AR). Spirometry assessments were performed to identify associations between SNPs and lung function among n = 74 pediatric asthmatic patients from the same cohort. Allergy-associated SNPs were functionally characterized using in vitro promoter luciferase assay, along with DNA methylome and transcriptome data of n = 237 peripheral blood mononuclear cell (PBMC) samples collected from a subset of the SMCSGES cohort.

    RESULTS: Genetic association analysis showed 5 tag-SNPs from 4 AA pathway genes were significantly associated with asthma (rs689466 at COX2, rs35744894 at hematopoietic PGD2 synthase (HPGDS), rs11097414 at HPGDS, rs7167 at CRTH2, and rs5758 at TBXA2R, p < 0.05), whereas 3 tag-SNPs from HPGDS (rs35744894, rs11097414, and rs11097411) and 2 tag-SNPs from PTGDR (rs8019916 and rs41312470) were significantly associated with AR (p < 0.05). The asthma-associated rs689466 regulates COX2 promoter activity and associates with COX2 mRNA expression in PBMC. The allergy-associated rs1344612 was significantly associated with poorer lung function, increased risks of asthma and AR, and increased HPGDS promoter activity. The allergy-associated rs8019916 regulates PTGDR promoter activity and DNA methylation levels of cg23022053 and cg18369034 in PBMC. The asthma-associated rs7167 affects CRTH2 expression by regulating the methylation level of cg19192256 in PBMC.

    CONCLUSIONS: The present study identified multiple allergy-associated SNPs that modulate the transcript expressions of key genes in the AA pathway. The development of a "personalized medicine" approach with consideration of genetic influences on the AA pathway may hopefully result in efficacious strategies to manage and treat allergic diseases.

    Matched MeSH terms: Cyclooxygenase 2
  17. Shafie NH, Mohd Esa N, Ithnin H, Md Akim A, Saad N, Pandurangan AK
    Biomed Res Int, 2013;2013:681027.
    PMID: 24260743 DOI: 10.1155/2013/681027
    Nutritional or dietary factors have drawn attention due to their potential as an effective chemopreventive agent, which is considered a more rational strategy in cancer treatment. This study was designed to evaluate the effect of IP₆ extracted from rice bran on azoxymethane- (AOM-) induced colorectal cancer (CRC) in rats. Initially, male Sprague Dawley rats were divided into 5 groups, with 6 rats in each group. The rats received two intraperitoneal (i.p.) injections of AOM in saline (15 mg/kg body weight) over a 2-week period to induce CRC. IP₆ was given in three concentrations, 0.2% (w/v), 0.5% (w/v), and 1.0% (w/v), via drinking water for 16 weeks. The deregulation of the Wnt/β-catenin signaling pathway and the expression of cyclooxygenase (COX)-2 have been implicated in colorectal tumorigenesis. β-Catenin and COX-2 expressions were analysed using the quantitative RT-PCR and Western blotting. Herein, we reported that the administration of IP₆ markedly suppressed the incidence of tumors when compared to the control. Interestingly, the administration of IP₆ had also markedly decreased β-catenin and COX-2 in colon tumors. Thus, the downregulation of β-catenin and COX-2 could play a role in inhibiting the CRC development induced by IP₆ and thereby act as a potent anticancer agent.
    Matched MeSH terms: Cyclooxygenase 2/metabolism*
  18. Mohtarrudin N, Ghazali R, Md Roduan MR
    Malays J Pathol, 2018 Dec;40(3):313-318.
    PMID: 30580362
    INTRODUCTION: Cyclooxygenase-2 (COX-2) promotes carcinogenesis by inducing proliferation and angiogenesis while decreasing apoptosis and immunosuppressive activity. It is overexpressed in many malignancies including renal cell carcinoma (RCC). The aim of this study was to investigate COX-2 expression in clear cell RCC and its association with tumour grades and demographic parameters.

    MATERIALS AND METHODS: Thirty-six clear cell RCC cases were selected. There were 21 (58.3%) men and 15 (41.7%) women with median age of 56.6 years (range: 16-74 years). Chinese constituted 16 (44.4%) of the cases; Malays 14 (38.9%) cases and Indian 6 (16.7%) cases. There were 6 (16.7%) grade 1, 20 (55.6%) grade 2, 10 (27.8%) grade 3 and none was grade 4. The paraffin embedded tissues were cut at 4 μm thick and stained with COX-2 monoclonal antibody.

    RESULTS: Eighteen (50%) of the RCC cases were immunopositive, of which all showed strong positivity. The immunopositive cases showed cytoplasmic membrane positivity.

    CONCLUSION: There was no significant association between COX-2 expression with grade, age, sex and ethnicity (p=0.457, p=0.054, p=0.389 and p=0.568 respectively). Strong positivity of COX-2 suggest that COX-2 may play a role in cell proliferation and in carcinogenesis.

    Matched MeSH terms: Cyclooxygenase 2/metabolism*
  19. Veettil SK, Teerawattanapong N, Ching SM, Lim KG, Saokaew S, Phisalprapa P, et al.
    Onco Targets Ther, 2017;10:2689-2700.
    PMID: 28579807 DOI: 10.2147/OTT.S127335
    BACKGROUND: Protective effects of several chemopreventive agents (CPAs) against colorectal adenomas have been well documented in randomized controlled trials (RCTs); however, there is uncertainty regarding which agents are the most effective.

    METHODS: We searched for RCTs published up until September 2016. Retrieved trials were evaluated using risk of bias. We performed both pairwise analysis and network meta-analysis (NMA) of RCTs to compare the effects of CPAs on the recurrence of colorectal adenomas (primary outcome). Using NMA, we ranked CPAs based on efficacy.

    RESULTS: We identified 20 eligible RCTs enrolling 12,625 participants with a history of colorectal cancer or adenomas who were randomly assigned to receive either a placebo or one of 12 interventions. NMA using all trials demonstrated that celecoxib 800 mg/day (relative risk [RR] 0.61, 95% confidence interval [CI] 0.45-0.83), celecoxib 400 mg/day (RR 0.70, 95% CI 0.55-0.87), low-dose aspirin (RR 0.75, 95% CI 0.59-0.96) and calcium (RR 0.81, 95% CI 0.69-0.96) were significantly associated with a reduction in the recurrence of any adenomas. NMA results were consistent with those from pairwise meta-analysis. The evidence indicated a high (celecoxib), moderate (low-dose aspirin) and low (calcium) Grading of Recommendations, Assessment, Development and Evaluation (GRADE) quality. NMA ranking showed that celecoxib 800 mg/day and celecoxib 400 mg/day were the best CPAs, followed by low-dose aspirin and calcium. Considering advanced adenoma recurrence, only celecoxib 800 mg/day and celecoxib 400 mg/day were demonstrated to have a protective effect (RR 0.37, 95% CI 0.27-0.52 vs RR 0.48, 95% CI 0.38-0.60, respectively).

    CONCLUSION: The available evidence from NMA suggests that celecoxib is more effective in reducing the risk of recurrence of colorectal adenomas, followed by low-dose aspirin and calcium. Since cyclooxygenase-2 (COX-2) inhibitors (eg, celecoxib) are associated with important cardiovascular events and gastrointestinal harms, more attention is warranted toward CPAs with a favorable benefit-to-risk ratio, such as low-dose aspirin and calcium.

    Matched MeSH terms: Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors
  20. Ahmad NS, Tan TL, Arifin KT, Ngah WZW, Yusof YAM
    PLoS One, 2020;15(3):e0230285.
    PMID: 32160261 DOI: 10.1371/journal.pone.0230285
    The aim of this study was to determine the association between secretory phospholipase A2 group IIA (sPLA2-IIA) and eicosanoid pathway metabolites in patients with bacterial sepsis syndrome (BSS). Levels of sPLA2-IIA, eicosanoids prostaglandin (PG)E2, PGD synthase were quantified in the sera from patients confirmed to have bacterial sepsis (BS; N = 45), bacterial severe sepsis/septic shock (BSS/SS; N = 35) and healthy subjects (N = 45). Cyclooxygenase (COX)-1 and COX-2 activities were analyzed from cell lysate. Serum levels of sPLA2-IIA, PGE2, and PGDS increased significantly in patients with BS and BSS/SS compared to healthy subjects (p<0.05). COX-2 activity was significantly increased in patients with BS compared to healthy subjects (p<0.05), but not COX-1 activity. Binary logistic regression analysis showed that sPLA2-IIA and PGE2 were independent factors predicting BSS severity. In conclusion, high level of sPLA2-IIA is associated with eicosanoid metabolism in patients with BSS.
    Matched MeSH terms: Cyclooxygenase 2/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links