Displaying publications 61 - 80 of 291 in total

Abstract:
Sort:
  1. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Environmental Monitoring/methods*
  2. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Environmental Monitoring/methods
  3. Mohd Nasir FA, Praveena SM, Aris AZ
    Ecotoxicol Environ Saf, 2019 Dec 15;185:109681.
    PMID: 31561079 DOI: 10.1016/j.ecoenv.2019.109681
    Studies on the occurrence of pharmaceutical residues in drinking water were conducted especially in developed countries. However, limited studies reported the occurrence of pharmaceutical residues in developing countries. Thus, this study is conducted to fill the knowledge gap of pharmaceutical residue occurrences in developing countries, particularly in Malaysia, along with public awareness level and its potential human health risk. This study investigates public awareness level of drinking water quality and pharmaceutical handling, the occurrence of nine pharmaceutical residues (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and potential human health risks in drinking water from Kajang (Malaysia) using commercially competitive enzyme-linked immunosorbent assay kits. In general, the public awareness level of Kajang population showed poor knowledge (82.02%), and less positive attitude (98.88%) with a good practice score (57.3%). Ciprofloxacin was detected at the highest concentration (0.667 ng/L) while amoxicillin was at the lowest concentration (0.001 ng/L) in drinking water from Kajang (Malaysia). Nevertheless, all the reported occurrences were lower than previous studies conducted elsewhere. There was no appreciable potential human health risk for all the pharmaceutical residues as the risk quotient (RQ) values were less than 1 (RQ 
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Environmental Monitoring/methods*
  5. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, et al.
    Chemosphere, 2019 Dec;237:124451.
    PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451
    This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
    Matched MeSH terms: Environmental Monitoring/methods*
  6. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Environmental Monitoring/methods
  7. Karbalaei S, Golieskardi A, Hamzah HB, Abdulwahid S, Hanachi P, Walker TR, et al.
    Mar Pollut Bull, 2019 Nov;148:5-15.
    PMID: 31422303 DOI: 10.1016/j.marpolbul.2019.07.072
    Plastic debris is widespread and ubiquitous in the marine environment and ingestion of plastic debris by marine organisms is well-documented. Viscera and gills of 110 individual marine fish from 11 commercial fish species collected from the marine fish market were examined for presence of plastic debris. Isolated particles were characterized by Raman spectroscopy, and elemental analysis was assessed using energy-dispersive X-ray spectroscopy (EDX). Nine (of 11) species contained plastic debris. Out of 56 isolated particles, 76.8% were plastic polymers, 5.4% were pigments, and 17.8% were unidentified. Extracted plastic particle sizes ranged from 200 to 34,900 μm (mean = 2600 μm ±7.0 SD). Hazardous material was undetected using inorganic elemental analysis of extracted plastic debris and pigment particles. The highest number of ingested microplastics was measured in Eleutheronema tridactylum and Clarias gariepinus, suggesting their potential as indicator species to monitor and study trends of ingested marine litter.
    Matched MeSH terms: Environmental Monitoring/methods*
  8. Razak HA, Wahid NBA, Latif MT
    Arch Environ Contam Toxicol, 2019 Nov;77(4):587-593.
    PMID: 31359072 DOI: 10.1007/s00244-019-00656-3
    Anionic surfactants are one of the pollutants derived from particulate matter (PM) and adversely affect the health of living organisms. In this study, the compositions of surfactants extracted from PM and vehicle soot collected in an urban area were investigated. A high-volume air sampler was used to collect PM sample at urban area based on coarse (> 1.5 µm) and fine (
    Matched MeSH terms: Environmental Monitoring/methods
  9. Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, et al.
    Sci Data, 2019 10 10;6(1):198.
    PMID: 31601817 DOI: 10.1038/s41597-019-0196-1
    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
    Matched MeSH terms: Environmental Monitoring/methods
  10. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
    Matched MeSH terms: Environmental Monitoring/methods*
  11. Ajab H, Ali Khan AA, Nazir MS, Yaqub A, Abdullah MA
    Environ Res, 2019 09;176:108563.
    PMID: 31280029 DOI: 10.1016/j.envres.2019.108563
    Environmental monitoring is important to determine the extent of eco-system pollution and degradation so that effective remedial strategies can be formulated. In this study, an environmentally friendly and cost-effective sensor made up of novel carbon electrode modified with cellulose and hydroxyapatite was developed for the detection of trace lead ions in aqueous system and palm oil mill effluent. Zinc, cadmium, and copper with lead were simultaneously detected using this method. The electrode exhibited high tolerance towards twelve common metal ions and three model surface active substances - sodium dodecyl sulfate, Triton X-100, and cetyltrimethylammonium bromide. Under optimum conditions, the sensor detected lead ions in palm oil mill effluent in the concentration range of 10-50 μg/L with 0.11 ± 0.37 μg/L limit of detection and 0.37 ± 0.37 μg/L limit of quantification. The validation using tap water, blood serum and palm oil mill effluent samples and compared with Atomic Absorption Spectroscopy, suggested excellent sensitivity of the sensor to detect lead ions in simple and complex matrices. The cellulose produced based on "green" techniques from agro-lignocellulosic wastes, in combination with hydroxyapatite, were proven effective as components in the carbon electrode composite. It has great potential in both clinical and environmental use.
    Matched MeSH terms: Environmental Monitoring/methods*
  12. Bzour M, Zuki FM, Mispan MS, Jodeh S, Abdel-Latif M
    Bull Environ Contam Toxicol, 2019 Aug;103(2):348-353.
    PMID: 31069403 DOI: 10.1007/s00128-019-02625-x
    The residual activity of herbicides may be detrimental to the environment, requiring analysis of the persistent residues in the soil and water. A field study was conducted to measure the residues of Imidazolinone (IMI) in three Clearfield® rice field soils at three different locations in Malaysia. The analyses of IMI in the soil samples were carried out using a high-performance liquid chromatography (HPLC). These herbicides are widely used; however, few studies have been conducted on both residues, especially in the context of Malaysian soil. Residues of imazapic and imazapyr were found to fall within 0.03-0.58 µg/mL and 0.03-1.96 µg/mL, respectively, in three locations. IMI herbicides are persistent in the soil, and their residues remain for up to 85 days after application. A pre-harvest study was suggested for these herbicides on water, which will provide a clearer indicator on the use of IMI in Clearfield® rice fields.
    Matched MeSH terms: Environmental Monitoring/methods
  13. Vijith H, Dodge-Wan D
    Environ Monit Assess, 2019 Jul 13;191(8):494.
    PMID: 31302794 DOI: 10.1007/s10661-019-7604-z
    The upper catchment region of the Baram River in Sarawak (Malaysian Borneo) is undergoing severe land degradation due to soil erosion. Heavy rainfall with high erosive power has led to a number of soil erosion hotspots. The goal of the present study is to generate an understanding about the spatial characteristics of seasonal and annual rainfall erosivity (R), which not only control sediment delivery from the region but also determine the quantity of material potentially eroded. Mean annual rainfall and rainfall erosivity range from 2170 to 5167 mm and 1632 to 5319 MJ mm ha-1 h-1 year-1, respectively. Seasonal rainfall and rainfall erosivity range from 848 to 1872 mm and 558 to 1883 MJ mm ha-1 h-1 year-1 for the southwest (SW) monsoon, 902 to 2200 mm and 664 to 2793 MJ mm ha-1h-1year-1 for the northeast (NE) monsoon and 400 to 933 mm and 331 to 1075 MJ mm ha-1 h-1 year-1 during the inter-monsoon (IM) period. Linear regression, Spearman's Rho and Mann Kendall tests were applied. Considering the regional mean rainfall erosivity in the study area, all the methods show an overall non-significant decreasing trend (- 9.34, - 0.25 and - 0.30 MJ mm ha-1 h-1 year-1, respectively for linear regression, Spearman's Rho and Mann Kendall tests). However, during SW monsoon and IM periods, rainfall erosivity showed a non-significant decreasing trend (- 25.45, - 0.52, - 0.40, and - 8.86, - 1.07, - 0.77 MJ mm ha-1 h-1 year-1, respectively) whereas in NE, monsoon season erosivity showed a non-significant increasing trend (14.90, 1.59 and 1.60 MJ mm ha-1 h-1 year-1, respectively). The mean erosivity density ranges from 0.77 to 1.38 MJ ha-1 h-1 year-1 and shows decreasing trend. Spatial distribution pattern of erosivity density indicates significantly higher occurrence of erosive rainfall in the lower elevation portion of the study area. The spatial pattern of mean rainfall erosivity trends (linear, Spearman's Rho and Mann Kendall) suggests that the study area can be divided into two zones with increasing rainfall erosivity trends in the northern zone and decreasing trends in the southern zone. These results can be used to plan conservation measures to reduce sediment delivery from localized soil erosion hotspots.
    Matched MeSH terms: Environmental Monitoring/methods*
  14. Sehreen F, Masud MM, Akhtar R, Masum MRA
    Environ Monit Assess, 2019 Jun 22;191(7):457.
    PMID: 31230139 DOI: 10.1007/s10661-019-7595-9
    The city of Dhaka has been ranked repeatedly as the most polluted, the most populous, and the most unbearable city in the world. More than 19.5 million inhabitants live in Dhaka, and the population growth rate of urban areas in Bangladesh is almost double that of rural areas. Rapid urbanization is one of the leading contributors to water pollution in Dhaka and could prevent the country from achieving sustainable development. Therefore, this study estimates respondents' willingness to pay (WTP) to improve water pollution management systems and identifies factors that influence WTP in Dhaka. This study employed the contingent valuation method (CVM) to estimate WTP of the respondents. Data were collected using a structured questionnaire with CVM questions, which was distributed to households in the study areas. The results revealed that 67% of the respondents are willing to pay for an improved water pollution management system, while 31.8% of households are unwilling to pay. The study also found that socio-economic factors (e.g., income and education) and perception significantly influence WTP. Therefore, this paper will provide directives for policymakers in developing an effective policy framework, as well as sensitize all stakeholders to the management of water pollution in Dhaka. The study suggests that social institutions, financial institutions, banks, non-government organizations (NGOs), insurance companies, and the government could provide effective outreach programs for water pollution management as part of their social responsibility.
    Matched MeSH terms: Environmental Monitoring/methods*
  15. Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ
    Environ Pollut, 2019 Jun;249:1019-1028.
    PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089
    Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
    Matched MeSH terms: Environmental Monitoring/methods*
  16. Affandi FA, Ishak MY
    Environ Sci Pollut Res Int, 2019 Jun;26(17):16939-16951.
    PMID: 31028621 DOI: 10.1007/s11356-019-05137-7
    Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
    Matched MeSH terms: Environmental Monitoring/methods*
  17. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

    Matched MeSH terms: Environmental Monitoring/methods*
  18. Reuben U, Ismail AF, Ahmad AL, Maina HM, Daud A
    PMID: 31013942 DOI: 10.3390/ijerph16081334
    : The chemicals from laboratories pose a significant risk forinducing erythema, an abnormal redness of the skin, as a result of poor occupational and environmental factors that promote hypersensitivity to a chemical agent. The aim of this present study was to determine the occupational and environmental risk factors influencing the inducement of erythema in laboratory workers due to exposure to chemicals. This was a cross-sectional study on a population-based sample of Nigerian university laboratory workers. Data were collected using the erythema index meter and an indoor air control meter. The study included 287 laboratory workers. The laboratory workers who properly used personal protective equipment (PPE) were 60% less likely to have induced erythema (adjusted odds ratio (AOR) = 0.40; 95% confidence interval CI: 0.22-0.77; probability value p = 0.011). The chemical mixture exceeding the permissible exposure limit (PEL) was found to have a small effect in inducing the erythema (AOR = 4.22; 95%CI: 2.88-12.11; p = 0.004). Most of the sampled laboratories where the respondents worked had unsuitable temperatures (AOR = 8.21; 95% CI: 4.03-15.01; p = 0.001). Erythema was more frequently found in the respondents who spent 4-5h in the laboratory (AOR = 3.11; 95%CI: 1.77-9.23; p = 0.001). However, high levels of ventilation reduce the likelihood of erythema in a laboratory by 82% (0.18). Multiple logistic regressions revealed that PPE, PEL, exposure time, temperature, and ventilation were the probable predictive factors associated with the inducement of erythema. Providing better educational knowledge and improving the attitude towards hazards and safety in a laboratory would lead to reduced rates of new cases.
    Matched MeSH terms: Environmental Monitoring/methods
  19. Prabakaran K, Nagarajan R, Eswaramoorthi S, Anandkumar A, Franco FM
    Chemosphere, 2019 Mar;219:933-953.
    PMID: 30572242 DOI: 10.1016/j.chemosphere.2018.11.158
    The geochemistry and distribution of major, trace and rare earth elements (REE's) was studied in the surface sediments of the Lower Baram River during two seasons: the Monsoon (MON) and Post - monsoon (POM). The major geochemical processes controlling the distribution and mobility of major, trace and REE's in the Lower Baram River surface sediments was revealed through factor analysis. The risk assessment of major and trace element levels was studied at three specific levels; i.e. the enrichment level [Contamination Factor (Cf), with the geo-accumulation index (Igeo)], the availability level [metals bound to different fractions, risk assessment code (RAC)], and the biological toxicity level [effect range low (ERL) and effect range medium (ERM)]. The results of all the indices indicate that Cu is the element of concern in the Lower Baram River sediments. The geochemical fractionation of major and trace elements were studied through sequential extraction and the results indicated a higher concentration of Mn in the exchangeable fraction. The element of concern, Cu, was found to be highly associated in the organic bound (F4) fraction during both seasons and a change in the redox, possibly due to storms or dredging activities may stimulate the release of Cu into the overlying waters of the Lower Baram River.
    Matched MeSH terms: Environmental Monitoring/methods*
  20. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Geochem Health, 2019 Feb;41(1):211-223.
    PMID: 30051257 DOI: 10.1007/s10653-018-0157-1
    The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
    Matched MeSH terms: Environmental Monitoring/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links