Displaying publications 61 - 80 of 140 in total

Abstract:
Sort:
  1. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: HT29 Cells
  2. Ho YF, Karsani SA, Yong WK, Abd Malek SN
    PMID: 23533528 DOI: 10.1155/2013/857257
    Researchers are looking into the potential development of natural compounds for anticancer therapy. Previous studies have postulated the cytotoxic effect of helichrysetin towards different cancer cell lines. In this study, we investigated the cytotoxic effect of helichrysetin, a naturally occurring chalcone on four selected cancer cell lines, A549, MCF-7, Ca Ski, and HT-29, and further elucidated its biochemical and molecular mechanisms in human lung adenocarcinoma, A549. Helichrysetin showed the highest cytotoxic activity against Ca Ski followed by A549. Changes in the nuclear morphology of A549 cells such as chromatin condensation and nuclear fragmentation were observed in cells treated with helichrysetin. Further evidence of apoptosis includes the externalization of phosphatidylserine and the collapse of mitochondrial membrane potential which are both early signs of apoptosis. These signs of apoptosis are related to cell cycle blockade at the S checkpoint which suggests that the alteration of the cell cycle contributes to the induction of apoptosis in A549. These results suggest that helichrysetin has great potentials for development as an anticancer agent.
    Matched MeSH terms: HT29 Cells
  3. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: HT29 Cells
  4. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: HT29 Cells
  5. Ashwaq AS, Al-Qubaisi MS, Rasedee A, Abdul AB, Taufiq-Yap YH, Yeap SK
    Int J Mol Sci, 2016 Oct 18;17(10).
    PMID: 27763535
    Dentatin (DEN), purified from the roots of Clausena excavata Burm f., has poor aqueous solubility that reduces its therapeutic application. The aim of this study was to assess the effects of DEN-HPβCD (hydroxypropyl-β-cyclodextrin) complex as an anticancer agent in HT29 cancer cell line and compare with a crystal DEN in dimethyl sulfoxide (DMSO). The exposure of the cancer cells to DEN or DEN-HPβCD complex leads to cell growth inhibition as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To analyze the mechanism, in which DEN or DEN-HPβCD complex causes the death in human colon HT29 cancer cells, was evaluated by the enzyme-linked immunosorbent assay (ELIZA)-based assays for caspase-3, 8, 9, and reactive oxygen species (ROS). The findings showed that an anti-proliferative effect of DEN or DEN-HPβCD complex were via cell cycle arrest at the G2/M phase and eventually induced apoptosis through both mitochondrial and extrinsic pathways. The down-regulation of poly(ADP-ribose) polymerase (PARP) which leaded to apoptosis upon treatment, was investigated by Western-blotting. Hence, complexation between DEN and HPβCD did not diminish or eliminate the effective properties of DEN as anticancer agent. Therefore, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents in the future.
    Matched MeSH terms: HT29 Cells
  6. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR
    Biotechnol Appl Biochem, 2021 Aug;68(4):902-917.
    PMID: 32856730 DOI: 10.1002/bab.2013
    Ganoderma neo-japonicum is a well-known medicinal mushroom in Asian countries. However, scientific validations on its curative activities are confined to cirrhosis and diabetes. In this study, the anticancer properties of G. neo-japonicum were evaluated using cellular and computational models. The ethanolic extract (EtOH) with a promising inhibitory effect was fractionated into four different fractions: hexane (Hex), chloroform (Chl), butanol (Btn), and aqueous (Aq). The active fractions were then subjected to cell apoptosis assessment and phytochemical profiling. Molecular docking was conducted to elucidate the affinity of selected constituents towards antiapoptotic Bcl-2 protein. The butanol fraction showed the highest antioxidant activities as well as total phenolic content. Both hexane and chloroform fractions exerted a potent cytotoxic effect on colonic carcinoma cells through the induction of apoptosis. Phytochemical analysis revealed that the chloroform fraction is terpenoid enriched whereas the hexane fraction comprises predominantly sterol constituents. Stellasterol and 1,25-dihydroxyvitamin D3 3-glycoside were demonstrated to have a high affinity towards Bcl-2 protein. Overall, G. neo-japonicum can be considered as a compelling therapeutic candidate for cancer treatment.
    Matched MeSH terms: HT29 Cells
  7. Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Kalantari K
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:841-849.
    PMID: 30423770 DOI: 10.1016/j.msec.2018.10.015
    Nanoemulsions have been used as a drug carrier system, particularly for poorly water-soluble drugs. Sorafenib is a poorly soluble drug and also there is no parenteral treatment. The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib. The formulations were prepared by high energy emulsification method and optimized by using Response Surface Methodology (RSM). Here, the effect of independent composition variables of lecithin (1.16-2.84%, w/w), Medium-Chain Triglycerides (2.32-5.68%, w/w) and polysorbate 80 (0.58-1.42%, w/w) amounts on the properties of Sorafenib-loaded nanoemulsion was investigated. The three responses variables were particle size, zeta potential, and polydispersity index. Optimization of the conditions according to the three dependent variables was performed for the preparation of the Sorafenib-loaded nanoemulsions with the minimum value of particle size, suitable rage of zeta potential, and polydispersity index. A formulation containing 0.05% of Sorafenib kept its properties in a satisfactory range over the evaluated period. The composition with 3% Medium-Chain Triglycerides, 2.5% lecithin and 1.22% polysorbate 80 exhibited the smallest particle size and polydispersity index (43.17 nm and 0.22, respectively) with the zeta potential of -38.8 mV was the optimized composition. The fabricated nanoemulsion was characterized by the transmission electron microscope (TEM), viscosity, and stability assessment study. Also, the cytotoxicity result showed that the optimum formulations had no significant effect on a normal cell in a low concentration of the drug but could eliminate the cancer cells. The dose-dependent toxicity made it a suitable candidate for parenteral applications in the treatment of breast cancer. Furthermore, the optimized formulation indicated good storage stability for 3 months at different temperatures (4 ± 2 °C, 25 ± 2 °C and 45 ± 2 °C).
    Matched MeSH terms: HT29 Cells
  8. Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S
    Nanomaterials (Basel), 2018 Feb 02;8(2).
    PMID: 29393902 DOI: 10.3390/nano8020083
    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
    Matched MeSH terms: HT29 Cells
  9. Lim KH, Raja VJ, Bradshaw TD, Lim SH, Low YY, Kam TS
    J Nat Prod, 2015 May 22;78(5):1129-38.
    PMID: 25919190 DOI: 10.1021/acs.jnatprod.5b00117
    Six new indole alkaloids, viz., cononusine (1, a rare example of an iboga-pyrrolidone conjugate), ervaluteine (2), vincamajicine (3), tacamonidine (4), 6-oxoibogaine (5), and N(4)-chloromethylnorfluorocurarine chloride (6), and two new vobasinyl-iboga bisindole alkaloids, ervatensines A (7) and B (8), in addition to other known alkaloids, were isolated from the stem-bark extract of the Malayan Tabernaemontana corymbosa. The structures of these alkaloids were established on the basis of NMR and MS analyses and, in one instance (7), confirmed by X-ray diffraction analysis. Vincamajicine (3) showed appreciable activity in reversing multidrug resistance in vincristine-resistant KB cells (IC50 2.62 μM), while ervatensines A (7) and B (8) and two other known bisindoles displayed pronounced in vitro growth inhibitory activity against human KB cells (IC50 < 2 μM). Compounds 7 and 8 also showed good growth inhibitory activity against A549, MCF-7, MDA-468, HCT-116, and HT-29 cells (IC50 0.70-4.19 μM). Cell cycle and annexin V-FITC apoptosis assays indicated that compounds 7 and 8 inhibited proliferation of HCT-116 and MDA-468 cells, evoking apoptotic and necrotic cell death.
    Matched MeSH terms: HT29 Cells
  10. Oon SF, Nallappan M, Kassim NK, Shohaimi S, Sa'ariwijaya MS, Tee TT, et al.
    Biochem Biophys Res Commun, 2016 09 23;478(3):1403-8.
    PMID: 27576204 DOI: 10.1016/j.bbrc.2016.08.136
    Hyperlipidemia is defined as the presence of either hypertriglyceridemia or hypercholesterolemia, which could cause atherosclerosis. Although hyperlipidemia can be treated by hypolipidemic drugs, they are limited due to lack of effectiveness and safety. Previous studies demonstrated that xanthorrhizol (XNT) isolated from Curcuma xanthorrhizza Roxb. reduced the levels of free fatty acid and triglyceride in vivo. However, its ability to inhibit cholesterol uptake in HT29 colon cells and adipogenesis in 3T3-L1 cells are yet to be reported. In this study, XNT purified from centrifugal TLC demonstrated 98.3% purity, indicating it could be an alternative purification method. The IC50 values of XNT were 30.81 ± 0.78 μg/mL in HT29 cells and 35.07 ± 0.24 μg/mL in 3T3-L1 adipocytes, respectively. Cholesterol uptake inhibition study using HT29 colon cells showed that XNT (15 μg/mL) significantly inhibited the fluorescent cholesterol analogue NBD uptake by up to 27 ± 3.1% relative to control. On the other hand, higher concentration of XNT (50 μg/mL) significantly suppressed the growth of 3T3-L1 adipocytes (5.9 ± 0.58%) compared to 3T3-L1 preadipocytes (81.31 ± 0.55%). XNT was found to impede adipogenesis of 3T3-L1 adipocytes in a dose-dependent manner from 3.125 to 12.5 μg/mL, where 12.5 μg/mL significantly suppressed 36.13 ± 2.1% of lipid accumulation. We postulate that inhibition of cholesterol uptake, adipogenesis, preadipocyte and adipocyte number may be utilized as treatment modalities to reduce the prevalence of lipidemia. To conclude, XNT could be a potential hypolipidemic agent to improve cardiovascular health in the future.
    Matched MeSH terms: HT29 Cells
  11. Rajedadram A, Pin KY, Ling SK, Yan SW, Looi ML
    J Zhejiang Univ Sci B, 2021 Feb 15;22(2):112-122.
    PMID: 33615752 DOI: 10.1631/jzus.B2000446
    This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. Cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 μg/mL) and PBL water extract (380 μg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 μmol/L) was obtained at 72 h. Cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.
    Matched MeSH terms: HT29 Cells
  12. Arul M, Roslani AC, Cheah SH
    In Vitro Cell Dev Biol Anim, 2017 May;53(5):435-447.
    PMID: 28120247 DOI: 10.1007/s11626-016-0126-x
    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC50values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC50) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC50. There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.
    Matched MeSH terms: HT29 Cells
  13. Pathmanathan SG, Lawley B, McConnell M, Baird MA, Tannock GW
    Anaerobe, 2020 Feb;61:102112.
    PMID: 31629806 DOI: 10.1016/j.anaerobe.2019.102112
    Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.
    Matched MeSH terms: HT29 Cells
  14. Chia SL, Lei J, Ferguson DJP, Dyer A, Fisher KD, Seymour LW
    Virology, 2017 05;505:162-171.
    PMID: 28260622 DOI: 10.1016/j.virol.2017.02.011
    Enadenotucirev (EnAd) is a group B oncolytic adenovirus developed for systemic delivery and currently undergoing clinical evaluation for advanced cancer therapy. For differentiated carcinomas, systemic delivery would likely expose virus particles to the basolateral surface of cancer cells rather than the apical surface encountered during natural infection. Here, we compare the ability of EnAd and adenovirus type-5 (Ad5) to infect polarised colorectal carcinoma cells from the apical or basolateral surfaces. Whereas Ad5 infection was more efficient via the apical than basolateral surface, EnAd readily infected cells from either surface. Progeny particles from EnAd were released preferentially via the apical surface for all cell lines and routes of infection. These data further support the utility of group B adenoviruses for systemic delivery and suggest that progeny virus are more likely to be released into the tumour rather than back through the basolateral surface into the blood stream.
    Matched MeSH terms: HT29 Cells
  15. Izadiyan Z, Shameli K, Miyake M, Teow SY, Peh SC, Mohamad SE, et al.
    PMID: 30606561 DOI: 10.1016/j.msec.2018.11.008
    Core-shell Fe3O4/Au nanostructures were constructed using an advanced method of two-step synthesis from Juglans regia (walnut) green husk extract. Several complementary methods were applied to investigate structural and magnetic properties of the samples. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), electron diffraction, optical, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) were used for nanoparticle characterizations. As shown by HR-TEM, the mean diameter of core-shell Fe3O4/Au nanoparticles synthesized using co-precipitation method was 6.08 ± 1.06 nm. This study shows that the physical and structural properties of core-shell Fe3O4/Au nanoparticles possess intrinsic properties of gold and magnetite. VSM revealed that the core-shell Fe3O4/Au have high saturation magnetization and low coercivity due to the magnetic properties. The core-shell nanoparticles show the inhibitory concentration (IC)50 of 235 μg/ml against a colorectal cancer cell line, HT-29. When tested against non-cancer cells, IC50 was not achieved even up to 500 μg/ml. This study highlights the magnetic properties and anticancer action of core-shell Fe3O4/Au nanoparticles. This compound can be ideal candidate for cancer treatment and other biomedical applications.
    Matched MeSH terms: HT29 Cells
  16. Saifullah B, Buskaran K, Shaikh RB, Barahuie F, Fakurazi S, Mohd Moklas MA, et al.
    Nanomaterials (Basel), 2018 Oct 11;8(10).
    PMID: 30314340 DOI: 10.3390/nano8100820
    The treatment of cancer through chemotherapy is limited by its toxicity to healthy tissues and organs, and its inability to target the cancer site. In this study, we have designed an anticancer nanocomposite delivery system for protocatechuic acid (PCA) using graphene oxide⁻polyethylene glycol as the nanocarrier, and coated with folic acid (GO⁻PEG⁻PCA⁻FA) for targeting the cancer cells. The designed anticancer delivery system was found to show much better anticancer activity than the free drug PCA against liver cancer HEP-G2 cells and human colon cancer HT-29 cells; at same time, it was found to be less toxic to normal fibroblast 3T3 cells. The folate-coated anticancer delivery system was found to show better activity then the free drug and the uncoated anticancer delivery system. The in vitro release of the PCA was found to be sustained in human physiological pHs, i.e., blood pH 7.4 and intracellular lysosomal pH 4.8. These in vitro findings are highly encouraging for further in vivo evaluation studies.
    Matched MeSH terms: HT29 Cells
  17. Wen CT, Hussein SZ, Abdullah S, Karim NA, Makpol S, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2012;13(4):1605-10.
    PMID: 22799375
    Gelam and Nenas monofloral honeys were investigated in this study for their chemopreventive effects against HT 29 colon cancer cells. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolim) assays showed more effective inhibition of colon cancer cells proliferation by Gelam honey with IC₅₀ values of 39.0 mg/ml and 85.5 mg/ml respectively after 24 hours of treatment. Alkali comet assays revealed both honeys increased DNA damage significantly in a dose dependent manner. In addition, annexin V-FITC/PI flow cytometry demonstrated that at IC₅₀ concentrations and above, both Gelam and Nenas honeys induced apoptosis significantlyat values higher than for necrosis (p<0.05). Measurement of prostaglandin E₂ (PGE₂) confirmed that Gelam and Nenas honeys reduced its production in H₂O₂ inflammation-induced colon cancer cells. In conclusion, our study indicated and confirmed that both Gelam and Nenas honeys are capable of suppressing the growth of HT 29 colon cancer cells by inducing apoptosis and suppressing inflammation.
    Matched MeSH terms: HT29 Cells
  18. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: HT29 Cells
  19. Karimian H, Moghadamtousi SZ, Fadaeinasab M, Golbabapour S, Razavi M, Hajrezaie M, et al.
    Drug Des Devel Ther, 2014;8:1481-97.
    PMID: 25278746 DOI: 10.2147/DDDT.S68818
    Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3 ± 0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.
    Matched MeSH terms: HT29 Cells
  20. Jaganathan SK, Supriyanto E, Mandal M
    World J Gastroenterol, 2013 Nov 21;19(43):7726-34.
    PMID: 24282361 DOI: 10.3748/wjg.v19.i43.7726
    AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells.

    METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.

    RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.

    CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

    Matched MeSH terms: HT29 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links