Displaying publications 61 - 80 of 322 in total

Abstract:
Sort:
  1. Tan WN, Lim JQ, Afiqah F, Nik Mohamed Kamal NNS, Abdul Aziz FA, Tong WY, et al.
    Nat Prod Res, 2018 Apr;32(7):854-858.
    PMID: 28782393 DOI: 10.1080/14786419.2017.1361951
    Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
    Matched MeSH terms: MCF-7 Cells
  2. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: MCF-7 Cells
  3. Piaru SP, Mahmud R, Abdul Majid AM, Ismail S, Man CN
    J Sci Food Agric, 2012 Feb;92(3):593-7.
    PMID: 25520982
    In this study the chemical composition, antioxidant activities and cytotoxic effect of the essential oils of Myristica fragrans (nutmeg) and Morinda citrifolia (mengkudu) were determined.
    Matched MeSH terms: MCF-7 Cells
  4. Karimian H, Fadaeinasab M, Zorofchian Moghadamtousi S, Hajrezaei M, Razavi M, Safi SZ, et al.
    PLoS One, 2015;10(5):e0127434.
    PMID: 25996383 DOI: 10.1371/journal.pone.0127434
    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.
    Matched MeSH terms: MCF-7 Cells
  5. Hassan LE, Dahham SS, Saghir SA, Mohammed AM, Eltayeb NM, Majid AM, et al.
    BMC Complement Altern Med, 2016 Oct 19;16(1):396.
    PMID: 27760539
    Balanite aegyptiaca (L.) Delile, is a plant with extensive medicinal properties. Its stem bark is traditionally known for its spasmolytic and antiepileptic properties and used to treat yellow fever, jaundice and syphilis. Angiogenesis (sprouting of new blood vessels) is crucial for tumor growth and metastasis. The goal of this study is investigate the antiangiogenic, cytotoxicity and antioxidant activity as well as antitumor in vivo properties of B. aegyptiaca stem bark extracts.
    Matched MeSH terms: MCF-7 Cells
  6. Arya A, Achoui M, Cheah SC, Abdelwahab SI, Narrima P, Mohan S, et al.
    PMID: 22474512 DOI: 10.1155/2012/627256
    We investigated the antioxidant potential, cytotoxic effect, and TNF-α inhibition activity with NF-κB activation response in a chloroform fraction of Centratherum anthelminticum seeds (CACF). The antioxidant property of CACF was evaluated with DPPH, ORAC, and FRAP assays, which demonstrated significant antioxidant activity. The cytotoxicity of CACF was tested using the MTT assay; CACF effective inhibitory concentrations (IC(50)) for A549, PC-3, MCF-7, and WRL-68 cells were 31.42 ± 5.4, 22.61 ± 1.7, 8.1 ± 0.9, and 54.93 ± 8.3 μg/mL, respectively. CACF effectively and dose-dependently inhibited TNF-α release, in vitro and in vivo. CACF inhibited TNF-α secretion in stimulated RAW264.7 macrophage supernatants with an IC(50) of 0.012 μg/mL, without affecting their viability; the highest dose tested reduced serum TNF-α by 61%. Acute toxicity testing in rats revealed that CACF was non-toxic at all doses tested. Matching the cytotoxic activity towards a mechanistic approach, CACF dose-dependently exhibited in vitro inhibitory effects against the activation of NF-κB translocation in MCF-7 cells. Preliminary phytochemical screening with GC/MS analysis detected 22 compounds in CACF, of which morpholinoethyl isothiocyanate was the most abundant (29.04%). The study reveals the potential of CACF in the treatment of breast cancer and in oxidative stress conditions with associated inflammatory responses.
    Matched MeSH terms: MCF-7 Cells
  7. Ismail NZ, Adebayo IA, Mohamed WAS, Mohamad Zain NN, Arsad H
    Mol Biol Rep, 2021 Nov;48(11):7361-7370.
    PMID: 34665399 DOI: 10.1007/s11033-021-06743-w
    BACKGROUND: C. vespertiliomis extracts were evaluated for antiproliferative and apoptosis effect on breast cancer (MCF7) cells.

    METHODS AND RESULTS: The leaves extracts were analysed for its antiproliferative effect on breast cancer (MCF7) cells and normal epithelial breast (MCF 10A) cells using Sulforhodamine B (SRB) assay. The selective extract was evaluated for its ability to induce apoptosis using Annexin V-FITC apoptosis staining and the expression of molecular genes using qualitative reverse transcription-polymerase chain reaction (RT-PCR) against MCF7 cells. Gas chromatography-mass spectrometry (GC-MS) was used to identify the compounds from the selective extract. The findings showed that dichloromethane fraction (CV-Dcm) extract had high antiproliferative effect against MCF7 cells (IC50 = 24 µg/mL, selective index (SI) = 8.17). The percentages of apoptosis cells in CV-Dcm-treated MCF7 cells was 58.8%. The CV-Dcm extract induced downregulation of PCNA level. The apoptotic genes were also triggered in both extrinsic and intrinsic signaling pathways, affecting a 1.5-fold increase in BAX, 1.4-fold increase in cytochrome c, 1.3-fold increase in caspase-8, 1.7-fold increase in caspase-3 and 0.5-fold-decrease in BCL-2. Treated MCF7 cells also activated P53-dependent apoptotic death pathway.

    CONCLUSIONS: The present work strongly suggests that high efficacy of CV-Dcm extract was attributed to its antiproliferative and apoptosis-inducing activation in MCF7 cells, most likely due to its favourable compounds.

    Matched MeSH terms: MCF-7 Cells
  8. Jia H, Liu M, Wang X, Jiang Q, Wang S, Santhanam RK, et al.
    Pharmacol Res, 2021 Jul;169:105686.
    PMID: 34022397 DOI: 10.1016/j.phrs.2021.105686
    Breast cancer (BC) occurrence and development tremendously affect female health. Currently breast cancer targeted drugs are still scarce. Natural products have become the main source of targeted drug for breast cancer due to low toxicity and high efficiency. Cimigenoside, natural compound isolated and purified from Cimicifuga dahurica (Turcz.) Maxim has been suggested to utilize for breast cancer treatment, however the mechanism of action has not been elucidated yet. In this article, the antitumor potential of Cimigenoside against breast cancer in vitro and in vivo study. Moreover, we further predicted the possible binding mode of Cimigenoside with γ-secretase through molecular docking studies. The results show that Cimigenoside has a significant inhibitory effect towards the proliferation or metastasis of breast cancer cells via suppressing the Notch signaling pathway-mediated mitochondrial apoptosis and EMT (epithelial mesenchymal transition). In terms of mechanism, Cimigenoside could inhibit the activation of PSEN-1, the catalytic subunit of γ-secretase, and also by cleaving the Notch protein mediated by PSEN-1. Overall, our findings provide scientific support to utilize Cimigenoside as an effective targeted drug for clinical treatment of BC.
    Matched MeSH terms: MCF-7 Cells/drug effects
  9. Rad SK, Kanthimathi MS, Abd Malek SN, Lee GS, Looi CY, Wong WF
    PLoS One, 2015;10(12):e0145216.
    PMID: 26700476 DOI: 10.1371/journal.pone.0145216
    BACKGROUND: Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

    METHODOLOGY/PRINCIPAL FINDINGS: The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34 ± 3.52 and 32.42 ± 0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

    CONCLUSION: Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.

    Matched MeSH terms: MCF-7 Cells
  10. Khurana RK, Kumar R, Gaspar BL, Welsby G, Welsby P, Kesharwani P, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:645-658.
    PMID: 30033299 DOI: 10.1016/j.msec.2018.05.010
    The current studies envisage unravelling the underlying cellular internalisation mechanism of the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their internalisation through flow cytometry and fluorescence microscopy, establishing it to be "clathrin-mediated" endocytic pathway. Apoptosis assay (65% cell death) and cell cycle distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as promising delivery systems for breast tumor therapeutics including TNBC.
    Matched MeSH terms: MCF-7 Cells
  11. Cheong PCH, Yong YS, Fatima A, Ng ST, Tan CS, Kong BH, et al.
    IUBMB Life, 2019 10;71(10):1579-1594.
    PMID: 31190445 DOI: 10.1002/iub.2101
    A lectin gene from the Tiger Milk Mushroom Lignosus rhinocerus TM02® was successfully cloned and expressed via vector pET28a in Escherichia coli BL21(DE3). The recombinant lectin, Rhinocelectin, with a predicted molecular mass of 22.8 kDa, was overexpressed in water-soluble form without signal peptide and purified via native affinity chromatography Ni-NTA agarose. Blast protein analysis indicated the lectin to be homologous to jacalin-related plant lectin. In its native form, Rhinocelectin exists as a homo-tetramer predicted with four chains of identical proteins consisting of 11 beta-sheet structures with only one alpha-helix structure. The antiproliferative activity of the Rhinocelectin against human cancer cell lines was concentration dependent and selective. The IC50 values against triple negative breast cancer cell lines MDA-MB-231 and breast cancer MCF-7 are 36.52 ± 13.55 μg mL-1 and 53.11 ± 22.30 μg mL-1 , respectively. Rhinocelectin is only mildly cytotoxic against the corresponding human nontumorigenic breast cell line 184B5 with IC50 value at 142.19 ± 36.34 μg mL-1 . The IC50 against human lung cancer cell line A549 cells is 46.14 ± 7.42 μg mL-1 while against nontumorigenic lung cell line NL20 is 41.33 ± 7.43 μg mL-1 . The standard anticancer drug, Doxorubicin exhibited IC50 values mostly below 1 μg mL-1 for the cell lines tested. Flow cytometry analysis showed the treated breast cancer cells were arrested at G0/G1 phase and apoptosis induced. Rhinocelectin agglutinated rat and rabbit erythrocytes at a minimal concentration of 3.125 μg mL-1 and 6.250 μg mL-1 , respectively.
    Matched MeSH terms: MCF-7 Cells
  12. Aziz MY, Abu N, Yeap SK, Ho WY, Omar AR, Ismail NH, et al.
    Molecules, 2016 Sep 14;21(9).
    PMID: 27649120 DOI: 10.3390/molecules21091228
    Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.
    Matched MeSH terms: MCF-7 Cells
  13. Jamil NAM, Rashid NMN, Hamid MHA, Rahmad N, Al-Obaidi JR
    World J Microbiol Biotechnol, 2017 Dec 04;34(1):1.
    PMID: 29204733 DOI: 10.1007/s11274-017-2385-4
    Tiger's milk mushroom is known for its valuable medicinal properties, especially the tuber part. However, wild tuber is very hard to obtain as it grows underground. This study first aimed to cultivate tiger's milk mushroom tuber through a cultivation technique, and second to compare nutritional and mycochemical contents, antioxidant and cytotoxic activities and compound screening of the cultivated tuber with the wild tuber. Results showed an increase in carbohydrate content by 45.81% and protein content by 123.68% in the cultivated tuber while fat content reduced by 13.04%. Cultivated tuber also showed an increase of up to 64.21% for total flavonoid-like compounds and 62.51% of total β-D-glucan compared to the wild tuber. The antioxidant activity of cultivated tuber and wild tuber was 760 and 840 µg mL-1, respectively. The cytotoxic activity of boiled water extract of cultivated tuber against a human lung cancer cell line (A549) was 65.50 ± 2.12 µg mL-1 and against a human breast cancer cell line (MCF7) was 19.35 ± 0.11 µg mL-1. β-D-glucan extract from the purification of boiled water extract of cultivated tuber showed cytotoxic activity at 57.78 ± 2.29 µg mL-1 against A549 and 33.50 ± 1.41 µg mL-1 against MCF7. However, the β-glucan extract from wild tuber did not show a cytotoxic effect against either the A549 or MCF7 cell lines. Also, neither of the extracts from cultivated tuber and wild tuber showed an effect against a normal cell line (MRC5). Compound profiling through by liquid chromatography mass spectrometry (LC/MS) showed the appearance of new compounds in the cultivated tuber. In conclusion, our cultivated tuber of tiger's milk mushroom using a new recipe cultivation technique showed improved nutrient and bioactive compound contents, and antioxidant and cytotoxic activities compared to the wild tuber. Further investigations are required to obtain a better quality of cultivated tuber.
    Matched MeSH terms: MCF-7 Cells/drug effects
  14. Yaacob NS, Ismail NF
    PMID: 24646375 DOI: 10.1186/1472-6882-14-106
    The Malaysian Tualang honey (TH) is not only cytotoxic to human breast cancer cell lines but it has recently been reported to promote the anticancer activity induced by tamoxifen in MCF-7 and MDA-MB-231 cells suggesting its potential as an adjuvant for the chemotherapeutic agent. However, tamoxifen produces adverse effects that could be due to its ability to induce cellular DNA damage. Therefore, the study is undertaken to determine the possible modulation of the activity of 4-hydroxytamoxifen (OHT), an active metabolite of tamoxifen, by TH in non-cancerous epithelial cell line, MCF-10A, in comparison with MCF-7 cells.
    Matched MeSH terms: MCF-7 Cells
  15. Zuhaida AA, Ali AM, Tamilselvan S, Alitheen NB, Hamid M, Noor AM, et al.
    Genet. Mol. Res., 2013;12(4):5547-59.
    PMID: 24301925 DOI: 10.4238/2013.November.18.5
    A phage display library of single chain variable fragment (scFv) against MCF-7 breast cancer cells was constructed from C3A8 hybridoma cells. RNA from the C3A8 was isolated, cDNA was constructed, and variable heavy and light immunoglobulin chain gene region were amplified using PCR. The variable heavy and light chain gene regions were combined with flexible linker, linked to a pCANTAB 5E phagemid vector and electrophoresed into supE strain of Escherichia coli TG1 cells. Forty-eight clones demonstrated positive binding activity to MCF-7 breast cancer cell membrane fragments and the strongest of 48 clones was selected for analysis. The anti-MCF-7 library evaluated by SfiI and NotI digests demonstrated that anti-MCF-7 scFv antibodies possess individual patterns that should be able to recognize distinct human breast cancer cells. The C3A8 scFv, with an apparent molecular weight of 32 kDa, showed high homology (99%) with single chain antibody against rice stripe virus protein P20. In summary, the anti MCF-7 scFv antibody can be used for pretargeting breast cancer for clinical diagnosis of patients; it also has potential for therapeutic applications.
    Matched MeSH terms: MCF-7 Cells
  16. Foo JB, Low ML, Lim JH, Lor YZ, Zainol Abidin R, Eh Dam V, et al.
    Biometals, 2018 08;31(4):505-515.
    PMID: 29623473 DOI: 10.1007/s10534-018-0096-4
    Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.
    Matched MeSH terms: MCF-7 Cells
  17. Iqbal MA, Haque RA, Ahamed SA, Jafari SF, Khadeer Ahamed MB, Abdul Majid AM
    Med Chem, 2015;11(5):473-81.
    PMID: 25553509
    Azolium (imidazolium and benzimidazolium) salts are known as stable precursors for the synthesis of Metal-N-Heterocyclic Carbene (M-NHC) complexes. Recently, some reports have been compiled indicating that benzimidazolium salts have anticarcinogenic properties. The current research is the further investigation of this phenomenon. Three ortho-xylene linked bis-benzimidazolium salts (1-3) with octyl, nonyl and decyl terminal chain lengths have been synthesized. Each of the compounds was characterized using FT-IR and NMR spectroscopic techniques. The molecular geometries of two of the salts (1-2) have been established using X-ray crystallographic technique. The compounds were tested for their cytotoxic properties against three cancerous cell lines namely, human colon cancer (HCT 116), human colorectal adenocarcinoma (HT- 29) and human breast adenocarcinoma (MCF-7). Mouse embryonic fibroblast (3T3-L1) was used as the model cell line of normal cells. The compounds showed selective anti-proliferative activities against the colorectal carcinoma cells. For HCT 116 and HT-29 cells, the IC50 values ranged 0.9-2.6 µM and 4.0-10.0 µM, respectively. The salts 1 and 3 displayed moderate cytotoxicity against the breast cancer (MCF-7) cells with IC50 58.2 and 13.3 µM, respectively. However, the salt 2 produced strong cytotoxicity against MCF-7 cells with IC50 4.4 µM. Interestingly, the compounds demonstrated poor cytotoxic effects towards the normal cells (3T3-L1) as the IC50 was found to be as high as 48.0 µM. Salts 2 and 3 demonstrated more pronounced anti-proliferative effect than the standard drugs used (5-Flourouracil and Tamoxifen).
    Matched MeSH terms: MCF-7 Cells
  18. Abu-Bakar A, Hu H, Lang MA
    Basic Clin Pharmacol Toxicol, 2018 Sep;123 Suppl 5:72-80.
    PMID: 29788535 DOI: 10.1111/bcpt.13046
    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs - including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2) - at the 'stress-responding' cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilization mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'-UTR of the CYP2A5 mRNA. We designed a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wild-type) or mutant - pGL4.38-Cyp2a5_StREMut and pGL4.38-Cyp2a5_XREMut - reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine the sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC50 and EC50 of the respective chemicals. The three assays are sensitive to sublethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wild-type reporter responded well to chemicals that activate crosstalk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound.
    Matched MeSH terms: MCF-7 Cells
  19. Lim CP, Yam MF, Asmawi MZ, Chin VK, Khairuddin NH, Yong YK, et al.
    PMID: 31097973 DOI: 10.1155/2019/7521504
    Medicinal plants have been considered as promising sources of drugs in treating various cancers. Crinum amabile (C. amabile), a plant species from the Amaryllidaceae family, is claimed to be a potential source for cancer chemotherapeutic compounds. Here, we aimed to investigate the potential of C. amabile as an anticancer agent. Dried leaves of C. amabile were serially extracted and our findings showed that chloroform extract (CE) was shown to exhibit cytotoxic effect against all cancer cell lines used. This active extract was further fractionated in which F5 fraction was shown to possess the highest cytotoxicity among all fractions. F5 fraction was then tested in-depth through Annexin V/FITC apoptosis and DNA fragmentation assays to determine its apoptotic effect on MCF-7 cells. Results revealed that F5 fraction only showed induction of cell apoptosis starting at 72-hour treatment while DNA fragmentation was not detected at any of the concentrations and treatment periods tested. Meanwhile, cell proliferation assay revealed that F5 fraction was able to inhibit normal cell proliferation as well as VEGF-induced cell proliferation of normal endothelial cell (HUVECs). In conclusion, F5 fraction from C. amabile leaf CE was able to exhibit cytostatic effect through antiproliferation activity rather than induction of cell apoptosis and therefore has the potential to be further investigated as an anticancer agent.
    Matched MeSH terms: MCF-7 Cells
  20. Ayob Z, Mohd Bohari SP, Abd Samad A, Jamil S
    PMID: 25574182 DOI: 10.1155/2014/732980
    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines.
    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links