Displaying publications 61 - 80 of 114 in total

Abstract:
Sort:
  1. Cheng WH, Yap CK
    Chemosphere, 2015 Sep;135:156-65.
    PMID: 25950409 DOI: 10.1016/j.chemosphere.2015.04.013
    Samples of mangrove snails Nerita lineata and surface sediments were collected from nine geographical sampling sites in Peninsular Malaysia to determine the concentrations of eight metals. For the soft tissues, the ranges of metal concentrations (μg g(-1) dry weight (dw)) were 3.49-9.02 for As, 0.69-6.25 for Cd, 6.33-25.82 for Cu, 0.71-6.53 for Cr, 221-1285 for Fe, 1.03-50.47 for Pb, and 102.7-130.7 for Zn while Hg as 4.00-64.0 μg kg(-1) dw(-1). For sediments, the ranges were 21.81-59.49 for As, 1.11-2.00 for Cd, 5.59-28.71 for Cu, 18.93-62.91 for Cr, 12973-48916 for Fe, 25.36-172.57 for Pb, and 29.35-130.34 for Zn while for Hg as 2.66-312 μg kg(-1) dw(-1). To determine the ecological risks on the surface habitat sediments, sediment quality guidelines (SQGs), the geochemical indices, and potential ecological risk index (PERI) were used. Based on the SQGs, all the metals investigated were most unlikely to cause any adverse effects. Based on geoaccumulation index and enrichment factor, the sediments were also not polluted by the studied metals. The PERI values based on As, Cd, Cu, Cr, Hg, Pb and Zn in this study were found as 'low ecological risk'. In order to assess the potential health risks, the estimated daily intakes (EDI) of snails were found to be all lower than the RfD guidelines for all metals, except for Pb in some sites investigated. Furthermore, the calculated target hazard quotients (THQ) were found to be less than 1. However, the calculated total target hazard quotients (TTHQ) from all sites were found to be more than 1 for high level consumers except KPPuteh. Therefore, moderate amount of intake is advisable to avoid human health risks to the consumers.
    Matched MeSH terms: Mercury/toxicity
  2. Foo SC, Ngim CH, Phoon WO, Lee J
    Sci Total Environ, 1988 Jun 15;72:113-22.
    PMID: 3406725
    Two hundred and twenty-five hair samples (150 Chinese, 44 Malays and 31 Indians) from healthy residents not occupationally exposed to mercury were analyzed by cold vapour atomic absorption spectrophotometry to determine their total, inorganic and organic mercury levels. The arithmetic means of total mercury levels in hair were 6.1, 5.2 and 5.4 ppm for the Chinese, Malays and Indians, respectively. Factors contributing to the amount of mercury in hair, including consumption of fish and marine products, use of traditional ethnic medicines, artificial hair waving, age, sex and ethnicity were analyzed. Fish consumption, sex and ethnicity are factors found to contribute significantly (p less than 0.05) to mercury levels in hair.
    Matched MeSH terms: Mercury/analysis*; Organomercury Compounds/analysis
  3. Wolswijk G, Satyanarayana B, Dung LQ, Siau YF, Ali ANB, Saliu IS, et al.
    J Hazard Mater, 2020 04 05;387:121665.
    PMID: 31784131 DOI: 10.1016/j.jhazmat.2019.121665
    Charcoal production activities at the Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia have a potential to emit volatile compounds such as Hg back into the ambient environment, raising concerns on the public health and safety. The present study was aimed at analyzing Hg concentration from different plant/animal tissues and sediment samples (in total 786 samples) to understand clearly the Hg distribution at the MMFR. Leaves of Rhizophora spp. showed higher Hg concentration with an increasing trend from young, to mature, to senescent and decomposing stages, which was possibly due to accumulation of Hg over time. The low Hg concentration in Rhizophora roots and bark suggests a limited absorption from the sediments and a meagre accumulation/partitioning by the plant tissue, respectively. In the case of mangrove cockles the concentration of Hg was lower than the permissible limits for seafood consumption. Although the mangrove gastropod - Cassidula aurisfelis Bruguière had rather elevated Hg in the muscle tissue, it is still less than the environmental safely limit. Beside the chances of atmospheric deposition for Hg, the sediment samples were found to be unpolluted in nature, indicating that in general the MMFR is still safe in terms of Hg pollution.
    Matched MeSH terms: Mercury/analysis*
  4. Ho YB, Abdullah NH, Hamsan H, Tan ESS
    Regul Toxicol Pharmacol, 2017 Aug;88:72-76.
    PMID: 28554823 DOI: 10.1016/j.yrtph.2017.05.018
    This study aims to determine concentrations of mercury in facial skin lightening cream according to different price categories (category I:
    Matched MeSH terms: Mercury/analysis*
  5. AlOmar MK, Alsaadi MA, Hayyan M, Akib S, Ibrahim M, Hashim MA
    Chemosphere, 2017 Jan;167:44-52.
    PMID: 27710842 DOI: 10.1016/j.chemosphere.2016.09.133
    Recently, deep eutectic solvents (DESs) have shown their new and interesting ability for chemistry through their involvement in variety of applications. This study introduces carbon nanotubes (CNTs) functionalized with DES as a novel adsorbent for Hg(2+) from water. Allyl triphenyl phosphonium bromide (ATPB) was combined with glycerol as the hydrogen bond donor (HBD) to form DES, which can act as a novel CNTs functionalization agent. The novel adsorbent was characterized using Raman, FTIR, XRD, FESEM, EDX, BET surface area, TGA, TEM and Zeta potential. Response surface methodology was used to optimize the removal conditions for Hg(2+). The optimum removal conditions were found to be pH 5.5, contact time 28 min, and an adsorbent dosage of 5 mg. Freundlich isotherm model described the adsorption isotherm of the novel adsorbent, and the maximum adsorption capacity obtained from the experimental data was 186.97 mg g(-1). Pseudo-second order kinetics describes the adsorption rate order.
    Matched MeSH terms: Mercury/chemistry*
  6. Haris H, Aris AZ, Mokhtar MB
    Chemosphere, 2017 Jan;166:323-333.
    PMID: 27710880 DOI: 10.1016/j.chemosphere.2016.09.045
    Total mercury (THg) and methylmercury (MeHg) concentrations were determined from sediment samples collected from thirty sampling stations in Port Klang, Malaysia. Three stations had THg concentrations exceeding the threshold effect level of the Florida Department of Environmental Protection and the Canadian interim sediment quality guidelines. THg and MeHg concentrations were found to be concentrated in the Lumut Strait where inputs from the two most urbanized rivers in the state converged (i.e. Klang River and Langat River). This suggests that Hg in the study area likely originated from the catchments of these rivers. MeHg made up 0.06-94.96% of the sediment's THg. There is significant positive correlation (p 
    Matched MeSH terms: Mercury/analysis*; Methylmercury Compounds/analysis*
  7. Le DQ, Satyanarayana B, Fui SY, Shirai K
    Biol Trace Elem Res, 2018 Dec;186(2):538-545.
    PMID: 29577182 DOI: 10.1007/s12011-018-1313-2
    The present study, aimed at observing the total concentration of mercury (Hg) in edible finfish species with an implication to human health risk, was carried out from the Setiu mangrove wetlands on the east coast of Peninsular Malaysia. Out of 20 species observed, the highest Hg concentrations were found among carnivores-fish/invertebrate-feeders, followed by omnivores and carnivores-invertebrate-feeders, while the lowest concentrations in herbivores. The Hg concentrations varied widely with fish species and body size, from 0.12 to 2.10 mg/kg dry weight. A positive relationship between body weight and Hg concentration was observed in particular for Toxotes jaculatrix and Tetraodon nigroviridis. Besides the permissible range of Hg concentration up to 0.3 mg/kg (cf. United States Environmental Protection Agency (USEPA)) in majority of species, the carnivore feeders such as Acanthopagrus pacificus, Gerres filamentosus, and Caranx ignobilis have shown excess amounts (> 0.40 mg/kg flesh weight) that raising concerns over the consumption by local people. However, the weekly intake of mercury-estimated through the fish consumption in all three trophic levels-suggests that the present Hg concentrations are still within the range of Provisional Tolerable Weekly Intake (PTWI) reported by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Perhaps, a multi-species design for Hg monitoring at Setiu wetlands would be able to provide further insights into the level of toxicity transfer among other aquatic organisms and thereby a strong health risk assessment for the local communities.
    Matched MeSH terms: Mercury/analysis*
  8. Ang HH, Lee EL, Cheang HS
    Int J Toxicol, 2004 Jan-Feb;23(1):65-71.
    PMID: 15162849 DOI: 10.1080/10915810490269654
    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Mercury/analysis*
  9. Abu Bakar N, Mohd Sata NS, Ramlan NF, Wan Ibrahim WN, Zulkifli SZ, Che Abdullah CA, et al.
    Neurotoxicol Teratol, 2017 Jan-Feb;59:53-61.
    PMID: 27919701 DOI: 10.1016/j.ntt.2016.11.008
    Chronic exposure to mercury (Hg) can lead to cumulative impairments in motor and cognitive functions including alteration in anxiety responses. Although several risk factors have been identified in recent year, little is known about the environmental factors that either due exposure toward low level of inorganic mercury that may led to the developmental disorders. The present study investigated the effects of embryonic exposure of mercury chloride on motor function and anxiety-like behavior. The embryo exposed to 6 different concentrations of HgCl2 (7.5, 15, 30, 100, 125, 250nM) at 5hpf until hatching (72hpf) in a semi-static condition. The mortality rate increased in a dose dependent manner where the chronic embryonic exposure to 100nM decreased the number of tail coiling, heartbeat, and swimming activity. Aversive stimulus was used to examine the effects of 100nM interferes with the development of anxiety-related behavior. No elevation in both thigmotaxis and avoidance response of 6dpf larvae exposed with 100nM were found. Biochemical analysis showed HgCl2 exposure affects proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. These results showed that implication of HgCl2 on locomotor and biochemical defects affects motor performance and anxiety-like responses. Yet, the potential underlying mechanisms these responses need to be further investigated which is crucial to prevent potential hazards on the developing organism due to neurotoxicant exposure.
    Matched MeSH terms: Mercury/toxicity*
  10. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
    Matched MeSH terms: Mercury/analysis
  11. Jeevanaraj P, Hashim Z, Elias SM, Aris AZ
    Environ Sci Pollut Res Int, 2016 Dec;23(23):23714-23729.
    PMID: 27619374
    We identified marine fish species most preferred by women at reproductive age in Selangor, Malaysia, mercury concentrations in the fish muscles, factors predicting mercury accumulation and the potential health risk. Nineteen most preferred marine fish species were purchased (n = 175) from selected fisherman's and wholesale market. Length, weight, habitat, feeding habit and trophic level were recognised. Edible muscles were filleted, dried at 80 °C, ground on an agate mortar and digested in Multiwave 3000 using HNO3 and H2O2. Total mercury was quantified using VP90 cold vapour system with N2 carrier gas. Certified reference material DORM-4 was used to validate the results. Fish species were classified as demersal (7) and pelagic (12) or predators (11), zoo benthos (6) and planktivorous (2). Length, weight and trophic level ranged from 10.5 to 75.0 cm, 0.01 to 2.50 kg and 2.5 to 4.5, respectively. Geometric mean of total mercury ranged from 0.21 to 0.50 mg/kg; maximum in golden snapper (0.90 mg/kg). Only 9 % of the samples exceeded the JECFA recommendation. Multiple linear regression found demersal, high trophic (≥4.0) and heavier fishes to accumulate more mercury in muscles (R (2) = 27.3 %), controlling for all other factors. About 47 % of the fish samples contributed to mercury intake above the provisional tolerable level (45 μg/day). While only a small portion exceeded the JECFA fish Hg guideline, the concentration reported may be alarming for heavy consumers. Attention should be given in risk management to avoid demersal and high trophic fish, predominantly heavier ones.
    Matched MeSH terms: Mercury/metabolism*
  12. Ahmad NI, Noh MF, Mahiyuddin WR, Jaafar H, Ishak I, Azmi WN, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3672-86.
    PMID: 25256581 DOI: 10.1007/s11356-014-3538-8
    This study was conducted to determine the concentration of total mercury in the edible portion of 46 species of marine fish (n = 297) collected from selected major fish landing ports and wholesale markets throughout Peninsular Malaysia. Samples were collected in June to December 2009. Prior to analysis, the fish samples were processed which consisted of drying at 65 °C until a constant weight was attained; then, it was grounded and digested by a microwave digestion system. The analytical determination was carried out by using a mercury analysis system. Total mercury concentration among fish species was examined. The results showed that mercury concentrations were found significantly higher (p 20 cm) and were positively related with fish size (length and weight) in all fish samples. Despite the results, the level of mercury in marine fish did not exceed the permitted levels of Malaysian and JECFA guideline values at 0.5 mg/kg methylmercury in fish.
    Matched MeSH terms: Mercury/analysis*; Methylmercury Compounds/analysis*
  13. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
    Matched MeSH terms: Mercury/chemistry*
  14. Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L
    Compr Rev Food Sci Food Saf, 2014 Jul;13(4):457-472.
    PMID: 33412705 DOI: 10.1111/1541-4337.12068
    Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular emphasis on the chemical binding of both the organic and inorganic forms of each element in various foods. The molecular groups and the ligands by which the food products bind with the metals and the types of these reactions are also presented.
    Matched MeSH terms: Mercury
  15. Kuppusamy G, Kong CK, Segaran GC, Tarmalingam E, Herriman M, Ismail MF, et al.
    Biology (Basel), 2020 Sep 05;9(9).
    PMID: 32899563 DOI: 10.3390/biology9090274
    Black soldier fly (BSF) larva is an attractive animal feed replacer due to its noticeable nutritional content. However, the conventional rearing method often resulted in BSF with undesirably high heavy metal residues that are harmful to animals. In this work, putrefied Sesbania grandiflora (S. Grandiflora) leaves were employed as feed to rear BSF larvae. The resultant BSF prepupae were found to contain 43.5% protein and 16.7% fat, reflecting a comparable protein content and a 2-fold reduction in crude fat than those reared using conventional kitchen waste. Moreover, high quantities of arginine (25.4 g/kg dry matter basis (DM)), carnitine (32.9 g/kg DM), and short-chain fatty acids, including lauric (40.00%), palmitic (19.20%), and oleic (12.10%) acids, have also been noticed in the BSF prepupae. Furthermore, the BSF larvae have been recorded with 0.185 mg/kg chromium, 0.380 mg/kg selenium, and mercury below the detection limit, which is far lower than those reared using conventional kitchen and agricultural wastes (≈1.7 mg/kg chromium, 1.2 mg/kg selenium, and 0.2 mg/kg mercury). Overall, the study shows that the nutritional quality of BSF prepupae is extensively improved when using S. Grandiflora as their feed. The resultant BSF prepupae may serve as an alternative feed for animal rearing.
    Matched MeSH terms: Mercury
  16. Padmakumar V, Premkala Raveendran K, Abdulla AM, Ganapathy S, Sainudeen S, Nasim VS, et al.
    J Pharm Bioallied Sci, 2019 May;11(Suppl 2):S397-S401.
    PMID: 31198376 DOI: 10.4103/JPBS.JPBS_44_19
    Background: Mercury is a naturally occurring metal that exists in three forms: elemental (metallic), inorganic, and organic mercury. Amalgam, which is an alloy of inorganic mercury, is used as a restorative material in dentistry. Organic mercury gets ingested in the body mainly by the consumption of seafood. Mercury is also stated to cause various adverse health effects such as gastrointestinal disturbances, dermatitis, muscle weakness, and neurological disorders. In recent years, the use of amalgam has become a controversy stating the various adverse effects of mercury. Hence, the study was conducted to determine and compare the variation in levels of organic and inorganic mercury in fish-eating children before and after placement of amalgam restoration.

    Materials and Methods: Seventy-five subjects, 42 males (56%) and 35 females (44%) of age group ranging 7-13 years, living in South Canara district of Karnataka, India, were selected as a part of the study. Hair and urine samples were collected for estimation of organic and inorganic levels of mercury, respectively. Informed consent was collected from all the participating subjects.

    Results: On comparison between organic and inorganic mercury levels during the study period, the concentration of organic mercury in hair samples was greater irrespective of amalgam restorations present (1.172 and 0.085, respectively; P < 0.001).

    Conclusion: Thus inorganic levels of mercury do not seem to pose a threat as much as the organic levels observed in hair, which remain fairly constant for a longer period of time. Hence in a coastal region where this study was undertaken and fish being a staple food, the risk could probably be attributed to more of an organic toxicity than an inorganic one. Thus amalgam is relatively safe to be practiced and the controversy against it should be reevaluated.

    Matched MeSH terms: Mercury
  17. Yusuf I, Ahmad SA, Phang LY, Yasid NA, Shukor MY
    3 Biotech, 2019 Jan;9(1):32.
    PMID: 30622870 DOI: 10.1007/s13205-018-1555-x
    The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
    Matched MeSH terms: Mercury
  18. Wee B, Ebihara M
    Sains Malaysiana, 2017;46:605-613.
    We report herewith the study of fingernail clippings obtained from the residents of Tokyo, Japan. A total of 18 participants with no health problems and occupational exposure to metals were recruited to provide fingernails samples for this study. Through the use of instrumental neutron activation analysis (INAA), 18 elements (Ag, Al, As, Ca, Cl, Co, Cu, Fe, Hg, K, Mg, Mn, Na, S, Sb, Se, V, and Zn) were determined. The results showed that the toxic elements in the fingernails are in the lower range when compared to literature values. There were no chronic exposures to toxic elements such as As and Hg found. The level of Hg found is lower than that reported 20 years ago, possibly due to the strict regulation control in Japan on the release of Hg to the environment. The elements Se and Zn are found to be rather uniformly distributed among participants and are in agreement with results from other countries. There were no significant differences in elemental concentrations due to genders and smoking habits. The overall data from this study showed similar concentrations to those of healthy participants from other countries. Thus, the current data could represent the background level of elemental concentrations in fingernails of residents in Tokyo, which could serve as reference values for future study.
    Matched MeSH terms: Mercury
  19. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, et al.
    Compr Rev Food Sci Food Saf, 2016 Jan;15(1):219-233.
    PMID: 33371579 DOI: 10.1111/1541-4337.12182
    Honey is a popular natural food product with a very complex composition mainly consisting of both organic and inorganic constituents. The composition of honey is strongly influenced by both natural and anthropogenic factors, which vary based on its botanical and geographical origins. Although minerals and heavy metals are minor constituents of honey, they play vital role in determining its quality. There are several different analytical methods used to determine the chemical elements in honey. These methods are typically based on spectroscopy or spectrometry techniques (including atomic absorption spectrometry, atomic emission spectrometry, inductively coupled plasma mass spectrometry, and inductively coupled plasma optical emission spectrometry). This review compiles available scientific information on minerals and heavy metals in honey reported from all over the world. To date, 54 chemical elements in various types of honey have been identified and can be divided into 3 groups: major or macroelements (Na, K, Ca, Mg, P, S, Cl), minor or trace elements (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, La, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr, As, B, Br, Cd, Hg, Se, Sr), and heavy metals (trace elements that have a specific gravity at least 5 times higher than that of water and inorganic sources). Chemical elements in honey samples throughout the world vary in terms of concentrations and are also influenced by environmental pollution.
    Matched MeSH terms: Mercury
  20. Siau YF, Le DQ, Suratman S, Jaaman SA, Tanaka K, Kotaro S
    Mar Pollut Bull, 2021 Jan;162:111878.
    PMID: 33341077 DOI: 10.1016/j.marpolbul.2020.111878
    Seasonal variations in total mercury concentrations [Hg] and trophic transfer through the food web were assessed using stable isotopic tracers for the Setiu Wetlands, Terengganu. The [Hg] measured in surface sediments and biota varied inversely between wet and dry seasons. Increased rainfall and water disturbance during the wet season are suggested as the main factors releasing Hg from surface sediments and enhancing the bioavailability of Hg to biota. The elevated Hg levels associated with the leaf stage suggested that litterfall and atmospheric deposition may be the main Hg inputs into mangrove food webs. The positive relationships between log [Hg] and δ15N provided evidence for Hg biomagnification, however low trophic magnification slopes in both seasons indicated that the ecological risk of Hg in the wetland would be negligible. The [Hg] in fish and commercial crabs were below the permitted limits for human consumption.
    Matched MeSH terms: Mercury
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links