Displaying publications 1 - 20 of 114 in total

Abstract:
Sort:
  1. Mok WJ, Hatanaka Y, Seoka M, Itoh T, Tsukamasa Y, Ando M
    Food Chem, 2014 Mar 15;147:340-5.
    PMID: 24206728 DOI: 10.1016/j.foodchem.2013.09.157
    Mercury contamination, especially of seafood, continues to attract public concern. Cysteine, NH2CH(CH2SH)COOH, is a naturally occurring hydrophobic amino acid that contains a thiol group. The purpose of our study was to investigate the use of the additive cysteine in fish diets to reduce mercury concentration in fish, and to observe the effectiveness of dietary cysteine in fish livers. Diets containing 1% and 10% cysteine successfully decreased mercury concentrations in fish compared with the 0% cysteine diet. The liver may have formed excessive lipid droplets or was unable to mobilize lipid stores during exposure to mercury; additional cysteine could help to mobilize excessive lipids in it.
    Matched MeSH terms: Mercury/analysis; Mercury/metabolism*
  2. Yap CK, Ismail A, Tan SG
    Bull Environ Contam Toxicol, 2003 Sep;71(3):570-6.
    PMID: 14567584
    Matched MeSH terms: Mercury/analysis*; Mercury/pharmacokinetics*
  3. Khairi NA, Yusof NA, Abdullah AH, Mohammad F
    Int J Mol Sci, 2015;16(5):10562-77.
    PMID: 26006226 DOI: 10.3390/ijms160510562
    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity.
    Matched MeSH terms: Mercury/isolation & purification*
  4. Ang HH, Lee KL
    Food Chem Toxicol, 2006 Aug;44(8):1245-50.
    PMID: 16567029 DOI: 10.1016/j.fct.2006.01.014
    The DCA (Drug Control Authority), Malaysia has implemented the phase three registration of traditional medicines on 1 January 1992. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation found in Malaysia, containing tongkat Ali hitam, either single or combined preparations, were analyzed for the presence of a heavy toxic metal, mercury, using atomic absorption spectrophotometer, after performing a simple random sampling to enable each sample an equal chance of being selected in an unbiased manner. Results showed that 26% of these products possessed 0.53-2.35 ppm of mercury, and therefore, do not comply with the quality requirement for traditional medicines in Malaysia. The quality requirement for traditional medicines in Malaysia is not exceeding 0.5 ppm for mercury. Out of these 26 products, four products have already registered with the DCA, Malaysia whilst the rest, however, have not registered with the DCA, Malaysia.
    Matched MeSH terms: Mercury/analysis*
  5. Lui JL, Tong SL, Teh SK
    Ann Dent, 1994;1(1):1-4.
    MyJurnal
    The mercury controversy related to dental amalgam is still continuing. In Malaysia, part of, this controversy has been attributed to a recently - introduced dental amalgam claimed to be non-mercury releasing and causing no mercury toxicity. The purpose of this study was to investigate whether this amalgam, Composil, was indeed non-mercury releasing. Six specimens each of Composil and a control (GS-80) were incubated at 3TC in deionised-distilled water. The daily mercury release was determined over a four-week study period using the stationary cold-vapour atomic absorption spectrometric method. The mean mercury release of Composil was 30.9 Ilg/cm2/ 24hr whilst that of GS-80 was 0.9 Ilg/cm2124hr and the difference was found to be highly significant (P < 0.00l). Results of this study therefore did not substantiate the manufacturer's claim. The release of mercury from amalgam restorations and their implications in clinical practice were also discussed.
    Matched MeSH terms: Mercury; Mercury Poisoning
  6. Kunjirama M, Saman N, Johari K, Song ST, Kong H, Cheu SC, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(17):15167-15181.
    PMID: 28500549 DOI: 10.1007/s11356-017-9117-z
    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Qm.exp) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Qm.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.
    Matched MeSH terms: Mercury/chemistry*
  7. Sarmani SB, Kiprawi AZ, Ismail RB
    Biol Trace Elem Res, 1994;43-45:435-41.
    PMID: 7710858
    Fish has been known as a source of nonoccupational mercury exposure to fish-consuming population groups. In this study, hair samples collected from fishermen and their families residing in an industrialized area in Penang and a nonindustrialized area in Terengganu were analyzed for mercury by neutron activation. The range, arithmetic mean, geometric mean, and median of the mercury concentrations for the groups in Penang and in Terengganu were 0.45-16.68, 3.61, 3.49, and 2.96 and 6.79-18.31, 12.08, 11.69, and 12.05 mg/kg, respectively. Somewhat lower values than from the Penang group were found in a group from Selangor consisting mainly of office workers. The group in Penang took about 40-100 g of fish/d, whereas the group in Terengganu consumed twice as much. This shows that hair mercury levels depend on a fish consumption pattern, and not on the location of the population. The levels of mercury found in this study were similar to those reported by other workers for fish-consuming population groups worldwide.
    Matched MeSH terms: Mercury/analysis*; Mercury Radioisotopes/analysis; Methylmercury Compounds/analysis
  8. Noor Adilah Hamzah, Ahmad Rasdan Ismail, Nor Kamilah Makhtar, Khairul Azhar Mat Daud, Norhidayah Mat Sout
    MyJurnal
    Today, more accidents reported in school, resulting not only minor injuries but also severe injuries such as fire in schools, mercury spills and falling from high places. The study was aimed at measuring the level of occupational safety and health practices in schools. The study was conducted at 205 schools in Kelantan, Malaysia. This study is a semi-quantitative study using observation method. Data collection is conducted based on Hazard Identification, Risk Assessment and Risk Control (HIRARC) Guidelines provided by the Department of Occupational Safety and Health, Malaysia. Hazard identification, risk assessment and risk control are determined using the HIRARC form. The findings were measured by determining the discrete data according to the number of low, medium and high-risk levels found. The study found that there were two dominant hazards namely physical hazard and ergonomic hazard. Therefore, the management should increase and improve classroom safety awareness to ensure safety and health of all occupants.
    Matched MeSH terms: Mercury
  9. Looi LJ, Aris AZ, Yusoff FM, Hashim Z
    Environ Monit Assess, 2015 Jan;187(1):4099.
    PMID: 25380712 DOI: 10.1007/s10661-014-4099-5
    Sediment is a great indicator for assessing coastal mercury contamination. This work profiled the magnitude of mercury pollution in the tropical estuaries and coastal sediments of the Strait of Malacca. Mercury was extracted through the ultrasound-assisted mercury extraction method and analyzed using the flow injection mercury system. The mean concentration of mercury in the sediment samples was 61.43 ± 23.25 μg/kg, ranging from 16.55 ± 0.61 to 114.02 ± 1.54 μg/kg. Geoaccumulation index revealed that a total of 13% of sampling sites were moderately enriched with mercury. The northern part of the Strait of Malacca had the highest mean mercury (Hg) concentration (76.36 ± 27.25 μg/kg), followed by the southern (64.59 ± 16.09 μg/kg) and central (39.33 ± 12.91 μg/kg) parts. Sediment mercury concentration in the current study was lower than other regions like Japan, China, Indian, east Mediterranean, and Taiwan. When compared to the Canadian interim marine and freshwater sediment, China's soil interim environmental guidelines, mercury contamination in the Strait of Malacca was found to be below these permissible limits. Sediment organic matter content was found to have significant correlation with sediment mercury concentration. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in tropical estuaries and coastal sediments.
    Matched MeSH terms: Mercury/analysis*
  10. Hajeb P, Jinap S, Ismail A, Mahyudin NA
    PMID: 22610296 DOI: 10.1007/978-1-4614-3414-6_2
    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption.
    Matched MeSH terms: Mercury/toxicity*
  11. Lai SO, Huang J, Hopke PK, Holsen TM
    Sci Total Environ, 2011 Mar 1;409(7):1320-7.
    PMID: 21257194 DOI: 10.1016/j.scitotenv.2010.12.032
    In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
    Matched MeSH terms: Mercury/analysis*
  12. Hajeb P, Jinap S
    PMID: 19690999 DOI: 10.1080/02652030903150567
    The objective of this study was to examine the effect of washing pre-treatment on mercury concentration in fish fillet. Response surface methodology was used to investigate the influence of three variables, pH (1-6.5), NaCl (0-1% w/v) and exposure time (5-30 min) by using a three-factor central composite design. The aim was to obtain the best possible combination of these variables in order to reduce mercury in fish fillet. The experimental data were adequately fitted into a second-order polynomial model with multiple regression coefficients (R(2)) of 0.961. The results indicated that the reduction of mercury in fish flesh significantly depends on the pH of the solution used. The overall optimal condition resulting in the maximum mercury reduction in fish fillet was obtained at a combined level pH of 2.79, NaCl of 0.5% and exposure time of 13.5 min. The optimized protocol produced a solution that can reduce mercury from raw fish fillet up to 81%.
    Matched MeSH terms: Mercury/chemistry*
  13. Yusof NA, Kadir WA
    PMID: 19010723 DOI: 10.1016/j.saa.2008.07.019
    Optical test strip based on the use of Br-PADAP as a sensitive reagent immobilised into sol-gel thin film for detection of Hg(II) in aqueous solution had been thoroughly carried out. It has a square-sensing zone (1.0 cm x 1.0 cm) containing the sensitive reagent necessary to produce response to trace level of mercury. This method offer sensitivity and simplicity in detecting Hg(II) as no prior treatment or extraction is required. A linear response was attained in the Hg(II) concentration in the range of 0.5-2.5 ppm with calculated limit of detection of 6.63 ppb. This method also showed a reproducible result with relative standard deviation (R.S.D.) of 2.15% and response time of approximately 5 min. Interference studies showed that Al(III), Co(II) and Ni(II) significantly interfered during the determination. The developed sensor has been validated against Atomic Absorption Spectroscopy method and proven comparable.
    Matched MeSH terms: Mercury/analysis*
  14. Looi LJ, Aris AZ, Haris H, Yusoff FM, Hashim Z
    Chemosphere, 2016 Jun;152:265-73.
    PMID: 26974481 DOI: 10.1016/j.chemosphere.2016.02.126
    The present study examined the concentrations of mercury (Hg), methylmercury (MeHg), and selenium (Se) in the multiple tissues of the Plotosus canius and Periophthalmodon schlosseri collected from the Strait of Malacca. The mean value in mg kg(-1) of Hg (P. canius: 0.34 ± 0.19; P. schlosseri: 0.32 ± 0.18) and MeHg in muscle (P. canius: 0.14 ± 0.11; P. schlosseri: 0.17 ± 0.11) were below the Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193-1995), the Malaysian Food Regulation 1985 and the Japan Food Sanitation Law. For P. canius, the liver contained the highest concentrations of Hg (0.48 ± 0.07 mg kg(-1)) and MeHg (0.21 ± 0.00 mg kg(-1)), whereas for P. schlosseri, the gill contained the highest concentrations of Hg (0.36 ± 0.06 mg kg(-1)) and MeHg (0.21 ± 0.05 mg kg(-1)). The highest concentration of (80)Se (mg kg(-1)) was observed in the liver of P. canius (20.34 ± 5.68) and in the gastrointestinal tract (3.18 ± 0.42) of P. schlosseri. The selenium:mercury (Se:Hg) molar ratios were above 1 and the positive selenium health benefit value (HBVSe) suggesting the possible protective effects of Se against Hg toxicity. The estimate weekly intakes (EWIs) in μg kg(-1) body weight (bw) week(-1) of Hg (P. canius: 0.27; P. schlosseri: 0.15) and MeHg (P. canius: 0.11; P. schlosseri: 0.08) were found to be lower than the provisional tolerable weekly intake established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the calculated EWIs, P. canius, and P. schlosseri were found to be unlikely to cause mercury toxicity in human consumption.
    Matched MeSH terms: Mercury; Mercury Poisoning; Methylmercury Compounds
  15. Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H
    Chemosphere, 2016 Aug;156:56-68.
    PMID: 27160635 DOI: 10.1016/j.chemosphere.2016.04.114
    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.
    Matched MeSH terms: Mercury/chemistry*
  16. Lee S, Roh Y, Kim KW
    Environ Geochem Health, 2019 Feb;41(1):71-79.
    PMID: 29761243 DOI: 10.1007/s10653-018-0121-0
    Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl-) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl- concentrations. The rate constants of Hg(II) reduction ranged from 0.14 to 1.73 h-1 in the presence of Cl- and were lower than the rate constant (2.41 h-1) in the absence of Cl-. Using a thermodynamic model, we showed that stable Hg(II)-chloride complexes were formed in the presence of Cl-. We further examined that H(0) was oxidized to Hg(II) in the presence of the reduced DOM and Cl- under anoxic conditions, indicating that Hg(II) reduction is inhibited by the Hg(0) oxidation. Therefore, the Hg(II) reduction by the reduced DOM can be offset due to the Hg(II)-chloride complexation and Hg(0) oxidation in chloride-rich environments. These processes can significantly influence the speciation of Hg and have an important implication for the behavior of Hg under environmentally relevant concentrations.
    Matched MeSH terms: Mercury/chemistry*
  17. Fiyadh SS, AlOmar MK, Binti Jaafar WZ, AlSaadi MA, Fayaed SS, Binti Koting S, et al.
    Int J Mol Sci, 2019 Aug 28;20(17).
    PMID: 31466219 DOI: 10.3390/ijms20174206
    Multi-walled carbon nanotubes (CNTs) functionalized with a deep eutectic solvent (DES) were utilized to remove mercury ions from water. An artificial neural network (ANN) technique was used for modelling the functionalized CNTs adsorption capacity. The amount of adsorbent dosage, contact time, mercury ions concentration and pH were varied, and the effect of parameters on the functionalized CNT adsorption capacity is observed. The (NARX) network, (FFNN) network and layer recurrent (LR) neural network were used. The model performance was compared using different indicators, including the root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (R2) and relative error (RE). Three kinetic models were applied to the experimental and predicted data; the pseudo second-order model was the best at describing the data. The maximum RE, R2 and MSE were 9.79%, 0.9701 and 1.15 × 10-3, respectively, for the NARX model; 15.02%, 0.9304 and 2.2 × 10-3 for the LR model; and 16.4%, 0.9313 and 2.27 × 10-3 for the FFNN model. The NARX model accurately predicted the adsorption capacity with better performance than the FFNN and LR models.
    Matched MeSH terms: Mercury/chemistry*
  18. Babji AS, Embong MS, Woon WW
    Bull Environ Contam Toxicol, 1979 Dec;23(6):830-6.
    PMID: 519067
    Matched MeSH terms: Mercury/analysis
  19. Hasni MJ
    MyJurnal
    Minamata disease is a well-known mercury contamination that happened in Japan in 1953. Due to demand during world war, second mercury disaster occurred in Niigata Prefecture in 1965. This is a review on the Niigata Minamata disease based on available documents and local expert opinions on the disaster. The aims of this paper are to record exposure history like the source of mercury in Agano River and specific fish that was associated with the disease. It is for an appraisal of the basic mercury exposure control, particularly to protect Japanese and world population during that time. There was indication that initial exposure limit for mercury was calculated incorrectly, and higher safe dose was applied. This epidemiological study is very useful and significant in comprehend the correct estimation of the human exposure to any hazardous substances.
    Matched MeSH terms: Mercury; Mercury Poisoning, Nervous System
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links