Analysis of 300 ns (ns) molecular dynamics (MD) simulations of an adenosine A2a receptor (A2a AR) model, conducted in triplicate, in 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) bilayers reveals significantly different protein dynamical behavior. Principal component analysis (PCA) shows that the dissimilarities stem from interhelical rather than intrahelical motions. The difference in the hydrophobic thicknesses of these simulated lipid bilayers is potentially a significant reason for the observed difference in results. The distinct lipid headgroups might also lead to different molecular interactions and hence different protein loop motions. Overall, the A2a AR shows higher mobility and flexibility in POPC as compared to POPE.
Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
While a group of oral commensals have been implicated in the aetiology of chronic periodontitis; the asaccharolytic Gram negative anaerobe Porphyromonas gingivalis is most commonly reported to be associated with severe forms of the disease. Although a variety of human tissues can produce a number of peptidylarginine deiminase (PAD), enzymes that convert peptide bound arginine residues to citrulline, P. gingivalis is one of the few prokaryotes known to express PAD. Protein and peptide citrullination are important in the development of rheumatoid arthritis and in recent years a number of authors have suggested a possible link between periodontitis and rheumatoid arthritis (RA). Indeed, some have linked P. gingivalis directly to RA via the action of PAD. Accordingly, the prime purpose of this study was to further characterise PAD in P. gingivalis cells particular emphasis on substrate specificity, using arginine containing peptides and RA relevant proteins.
A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.
MicroRNAs (miRNAs) are ~20-22 nucleotides, non protein-coding RNA regulatory genes that post-transcriptionally regulate many protein-coding genes, influencing critical biological and metabolic processes. While the number of known microRNA is increasing, there is currently no published data for miRNA from giant freshwater prawns, Macrobrachium rosenbergii (M. rosenbergii), a commercially cultured and economically important food species. In this study, we identified novel miRNAs in the gill and hepatopancreas of M. rosenbergii. Through a deep parallel sequencing analysis and an in silico data analysis approach, 327 miRNA families were identified from small RNA libraries with reference to both the de novo transcriptome of M. rosenbergii obtained from RNA-Seq and to miRBase (Release 18.0, November 2012). Based on the identified mature miRNA and recovered precursor sequences that form appropriate hairpin structures, three conserved miRNA (miR125, miR750, miR993) and 27 novel miRNA candidates encoding messenger-like non-coding RNA were identified. miR-125, miR-750, G-m0002/H-m0009, G-m0005, G-m0008/H-m0016, G-m0011/H-m0027 and G-m0015 were selected for experimental validation with stem-loop quantitative RT-PCR and were found to be coherent with the expression profile of deep sequencing data as evaluated with Pearson's correlation coefficient (r = 0.835178 for miRNA in gill, r = 0.724131 for miRNA in hepatopancreas). Using a combinatorial approach of pathway enrichment analysis and inverse expression relationship of miRNA and mRNA, four co-expressed novel miRNA candidates (G-m0005, G-m0008/H-m0016, G-m0011/H-m0027, and G-m0015) were found to be associated with energy metabolism. In addition, the expression of the three novel miRNA candidates (G-m0005, G-m0008/H-m0016, and G-m0011/H-m0027) were also found to be significantly reduced at 9 and 24 h post infection in M. rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus, suggesting a functional role of these miRNAs in crustacean immune defense.
Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
The aeration strategy ranging from intermittent to continuous aeration in the REACT period of moving bed sequencing batch reactor (MBSBR) was evaluated for simultaneous removal of 4-chlorophenol (4-CP) and nitrogen. The results show that the removal rates of 4-CP and ammonium nitrogen (NH(4)(+)-N) increased with the increase of continuous aeration period. In the presence of 4-CP, NH(4)(+)-N removal was mainly by the assimilation process. The removal of NH(4)(+)-N to oxidized nitrogen via oxidation was only observed after 4-CP was completely degraded with sufficient aeration period provided indicating the inhibitory effect of 4-CP on nitrification. As the intermittent aeration strategy would lead to slower 4-CP degradation resulting in the delay of nitrification process, continuous aeration would be the preferred strategy in the simultaneous removal of 4-CP and nitrogen in the MBSBR system.
A white-rot fungus of Polyporus sp. S133 was isolated from an oil-polluted soil. The metabolism of pyrene by this fungus was investigated in liquid medium with 5 mg of the compound. Depletion of pyrene was evident during the 30-day growth period and was 21% and 90%, respectively, in cometabolism and metabolism of pyrene alone. Pyrene was absorbed to fungal cells or biodegraded to form simpler structural compounds. Seventy-one percent of eliminated pyrene was transformed by Polyporus sp. S133 into other compounds, whereas only 18% was absorbed in the fungal cell. The effects of pH and temperature on biomass production of Polyporus sp. S133 for pyrene were examined; the properties of laccase and 1,2-dioxygenase produced by Polyporus sp. S133 during pyrene degradation were investigated. The optimal values of pH were 3, 5, and 4 for laccase, 1,2-dioxygenase, and biomass production, respectively, whereas the optimal values of temperature were 25 °C for laccase and 50 °C for 1,2-dioxygenase and biomass production. Under optimal conditions, pyrene was mainly metabolized to 1-hydroxypyrene and gentisic acid. The structure of 1-hydroxypyrene and gentisic acid was determined by gas chromatography-mass spectrometry after identification using thin-layer chromatography.
The effect of a yoghurt supplement containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536 on plasma lipids, lipid peroxidation and the faecal excretion of bile acids was examined in rats fed a cholesterol-enriched diet. After 8 weeks, the rats in the positive control (PC) group who were fed the cholesterol-enriched diet showed significant increases in plasma total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, and malondialdehyde (MDA). However, groups fed a cholesterol-enriched diet supplemented with yoghurt containing B. pseudocatenulatum G4 or B. longum BB536 had significantly lower plasma TC, LDL-C, very-low-density lipoprotein (VLDL) cholesterol, and MDA than had the PC group after 8 weeks of treatment. In addition, faecal excretion of bile acids was markedly increased in the rats fed the yoghurt containing B. pseudocatenulatum G4 or B. longum BB536 as compared to the PC and NC groups.
The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used.
Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.
Heavy metals, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. This study was conducted to determine the levels of cadmium, lead, and arsenic in nail samples from farmers at Muda Agricultural Development Authority (MADA), Kedah, Malaysia, and evaluate factors that can contribute to their accumulations. A total of 116 farmers participated in this study. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze concentration of heavy metals in the nail samples and questionnaires were given to participants to get demographic, health status, and their agricultural activities data. In this paper, the level of heavy metals was within the normal range and varies according to demographic factors. We found that there were significant correlations between working period with level of lead and arsenic (r=0.315 and r=0.242, resp., P<0.01) and age with lead level (r=0.175, P<0.05). Our findings suggested that agricultural activities could contribute to the accumulation of heavy metals in farmers. Hence, the control of environmental levels of and human exposure to these metals to prevent adverse health effects is still an important public health issue.
Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). 1-Hydroxypyrene was directly identified by GC-MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.
The biodegradation of benzo[a]pyrene (BaP) by using Polyporus sp. S133, a white-rot fungus isolated from oil-contaminated soil was investigated. Approximately 73% of the initial concentration of BaP was degraded within 30 d of incubation. The isolation and characterization of 3 metabolites by thin layer chromatography, column chromatography, and UV-vis spectrophotometry in combination with gas chromatography-mass spectrometry, indicated that Polyporus sp. S133 transformed BaP to BaP-1,6-quinone. This quinone was further degraded in 2 ways. First, BaP-1,6-quinone was decarboxylated and oxidized to form coumarin, which was then hydroxylated to hydroxycoumarin, and finally to hydroxyphenyl acetic acid by addition of an epoxide group. Second, Polyporus sp. S133 converted BaP-1,6-quinone into a major product, 1-hydroxy-2-naphthoic acid. During degradation, free extracellular laccase was detected with reduced activity of lignin peroxidase, manganese-dependent peroxidase and 2,3-dioxygenase, suggesting that laccase and 1,2-dioxygenase might play an important role in the transformation of PAHs compounds.
The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 10(6) CFU mL(-1) of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15-240 mg L(-1) of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil-sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.
Matched MeSH terms: Acinetobacter/metabolism*; Chromium/metabolism*; Water Pollutants, Chemical/metabolism*; Impatiens/metabolism; Coleus/metabolism
Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
The effectiveness of different soil tests in assessing soil phosphorus (P) in soils amended with phosphate rocks (PRs) is uncertain. We evaluated the effects of triple superphosphate (TSP) and PRs on extractable P by conventional soil tests (Mehlich 3 [Meh3] and Bray-1 [B1]) and a nonconventional test (iron oxide-impregnated paper, strip). Extracted amounts of P were in the order: Meh3 >B1 > strip. All the tests were significantly correlated (p = 0.001). Acidic reagents extracted more P from TSP than PRs, while the strip removed equal amounts from the two sources. The P removed by the three tests was related significantly to dry matter yield (DMY), but only in the first harvest, except for B1. Established critical P levels (CPLs) differed for TSP and PRs. In PR-fertilized soils, CPLs were 27, 17, and 12 mg P kg(-1) soil for Meh3, B1, and strip, respectively, and 42, 31, and 12 mg P kg(-1) soil, respectively, in TSP-fertilized soils. Thus, the strip resulted in a common CPL for TSP and PRs (12 mg P kg(-1) soil). This method can be used effectively in soils where integrated nutrient sources have been used, but there is need to establish CPLs for different crops. For cost-effective fertilizer P recommendations based on conventional soil tests, there is a need to conduct separate calibrations for TSP- and PR-fertilized soils.