Displaying publications 781 - 800 of 5118 in total

Abstract:
Sort:
  1. Ng SH, Tay JS, Lai EL
    BMJ Case Rep, 2021 May 24;14(5).
    PMID: 34031075 DOI: 10.1136/bcr-2020-240611
    IgG4-related disease (IgG4-RD) is a systemic fibroinflammatory disease characterised by dense lymphoplasmacytic infiltration rich in IgG4-positive plasma cells, storiform fibrosis and obliterative phlebitis. Serum IgG4 levels are typically elevated but half of the patients had normal serum IgG4 levels. IgG4-RD represents a spectrum of diseases that involve various organs such as the pancreas, liver, kidneys, and salivary glands often manifesting as diffuse organ enlargement or a mass-like lesion mimicking cancer. An increased incidence of malignancy among patients with IgG4-RD has been reported. Thus, differentiating malignancy from IgG4-RD manifestation is important as the treatment differs. Glucocorticoids are considered first-line therapy and should be started early to prevent fibrosis. Patients usually have an excellent clinical response to steroids, and poor steroid response is indicative of an alternative diagnoses such as malignancy. This case report describes a case of IgG4-RD with renal mass in a young man that resolved with glucocorticoid therapy alone.
    Matched MeSH terms: Plasma Cells/pathology
  2. Diajil AR, Goodson ML
    J Oral Pathol Med, 2023 Jul;52(6):521-527.
    PMID: 37038041 DOI: 10.1111/jop.13432
    BACKGROUND: The ABO and Rh systems are the most commonly used blood-group systems used to classify blood group globally. A number of studies have shown that ABO blood groups may be associated with an increased serum cholesterol levels which in turn may be related to the presence of oral Fordyce spots or granules. Oral Fordyce's granules are ectopic sebaceous glands within the oral cavity and are visible through epithelium. The aim of this study was to assess the relationship between ABO and Rhesus blood groups and the presence of oral Fordyce's granules and serum cholesterols level by gender.

    METHODS: Following ethical approval and informed consent, 124 subjects were recruited into this cross-sectional study. Clinical oral examination assessed the number of Fordyce's granules and blood samples were collected to determine the serum cholesterol and ABO/Rh blood-group systems of individual subjects.

    RESULTS: Blood group AB+ showed the highest mean of oral Fordyce's granules number and serum cholesterol level but this was not statistically significant compared to other blood groups. Female subjects in this study who were AB+ were had significantly higher serum cholesterol levels than males.

    CONCLUSION: This study indicates an association between ABO blood group, serum cholesterol level and mean number of oral Fordyce's granules. A larger sample size in a future study is required to ascertain whether number of Fordyce's granules is an important measure of serum cholesterol, but the study does show that for AB+ individuals, females may have higher serum cholesterol than males.

    Matched MeSH terms: Sebaceous Glands/pathology
  3. Al Qabbani A, Rani KGA, AlKawas S, Sheikh Abdul Hamid S, Yap Abdullah A, Samsudin AR, et al.
    PLoS One, 2023;18(12):e0294291.
    PMID: 38127838 DOI: 10.1371/journal.pone.0294291
    The aim of this study was to compare the ability of demineralized (DMB) and decellularized (DCC) bovine bone granules to support bone regeneration in rat calvaria critical-size defects. DMB and DCC were prepared using a previously published method. The granule size used ranged between 500 and 750 μm. A total of forty-eight Sprague-Dawley rats were divided into two groups (n = 24). A pair of 5 mm diameter defects were created on the calvaria of the rats in the right and left parietal bone in both groups. Group A animals received DMB granules and Group B received DCC granules in the right parietal defect side while the left parietal untreated defect acted as sham surgery for both groups. Four animals per group were euthanized in a CO2 chamber at day 7, 14 and 21 post-surgery and the calvaria implantation site biopsy harvested was subjected to osteogenic gene expression analysis. Another four animals per group were euthanized at days 15, 30 and 60 post surgery and the calvaria implantation site biopsy harvested was subjected to histological, immunohistochemistry, RAMAN spectroscopy and Micro-CT analysis at the mentioned time points. Statistical analysis was conducted using t-tests and ANOVA. Histomorphometry showed significantly higher new bone formation in the DCC sites (p<0.05) compared to DMB. Both DMB and DCC implantation sites showed distinct staining for osteocalcin and osteopontin proteins compared to their respective sham sites. By day 21 after implantation, DCC sites demonstrated significantly elevated mRNA levels of osteonectin (p<0.001), osteopontin (p<0.001), osteocalcin (p<0.0001), ALP (p<0.01), and BMP-2 (p<0.001) compared to DMB. However, VEGF expression showed no significant differences at this time point between the two groups. Micro-CT analysis also showed enhanced defect closure and higher bone density in DCC implanted sites while RAMAN spectra demonstrated increased abundance of collagen and bone minerals, especially, PO43- ions than DMB. In conclusion, both DMB and DCC granules demonstrated favorable osteogenic potential in critical-sized defects, with DCC exhibited superior osteoconductive, osteoinductive and osteogenesis properties.
    Matched MeSH terms: Skull/pathology
  4. Ooi KM, Saniasiaya J, Kulasegarah J, Ong DL
    BMJ Case Rep, 2024 Jan 12;17(1).
    PMID: 38216171 DOI: 10.1136/bcr-2023-256699
    Bronchogenic cyst is a congenital abnormality arising from the tracheobronchial system. Localisation of such cysts in the head and neck region is rare. We report a girl in her early childhood with a painless enlarging right lateral neck mass diagnosed with a branchial cleft cyst based on clinical and radiological MRI findings. An incidental finding of a cervical bronchogenic cyst was made on the final histopathological specimen. Although rare, bronchogenic cysts should be considered as differential diagnoses for paediatric patients' lateral and midline cervical masses.
    Matched MeSH terms: Neck/pathology
  5. Voon W, Hum YC, Tee YK, Yap WS, Nisar H, Mokayed H, et al.
    Sci Rep, 2023 Nov 22;13(1):20518.
    PMID: 37993544 DOI: 10.1038/s41598-023-46619-6
    Debates persist regarding the impact of Stain Normalization (SN) on recent breast cancer histopathological studies. While some studies propose no influence on classification outcomes, others argue for improvement. This study aims to assess the efficacy of SN in breast cancer histopathological classification, specifically focusing on Invasive Ductal Carcinoma (IDC) grading using Convolutional Neural Networks (CNNs). The null hypothesis asserts that SN has no effect on the accuracy of CNN-based IDC grading, while the alternative hypothesis suggests the contrary. We evaluated six SN techniques, with five templates selected as target images for the conventional SN techniques. We also utilized seven ImageNet pre-trained CNNs for IDC grading. The performance of models trained with and without SN was compared to discern the influence of SN on classification outcomes. The analysis unveiled a p-value of 0.11, indicating no statistically significant difference in Balanced Accuracy Scores between models trained with StainGAN-normalized images, achieving a score of 0.9196 (the best-performing SN technique), and models trained with non-normalized images, which scored 0.9308. As a result, we did not reject the null hypothesis, indicating that we found no evidence to support a significant discrepancy in effectiveness between stain-normalized and non-normalized datasets for IDC grading tasks. This study demonstrates that SN has a limited impact on IDC grading, challenging the assumption of performance enhancement through SN.
    Matched MeSH terms: Breast/pathology
  6. Abdelrasoul M, El-Fattah AA, Kotry G, Ramadan O, Essawy M, Kamaldin J, et al.
    Oral Dis, 2023 Nov;29(8):3583-3598.
    PMID: 35839150 DOI: 10.1111/odi.14314
    BACKGROUND: Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin.

    MATERIALS AND METHODS: A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis.

    RESULTS: Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment.

    CONCLUSIONS: Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.

    Matched MeSH terms: Periodontal Ligament/pathology
  7. Maifata S, Hod R, Ghani FA, Zakaria F
    Saudi J Kidney Dis Transpl, 2023 Mar 01;34(2):167-177.
    PMID: 38146727 DOI: 10.4103/1319-2442.391896
    The prevalence of glomerulonephritis (GN), especially membranous GN (MGN), changes from time to time. This change may be due to genetic predisposition, environmental factors race, age, and indications for a renal biopsy. This study was conducted to evaluate the distribution and changing patterns of GN by further assessing the prevalence of MGN. A 1000, 123 biopsies were performed from January 2012 to October 2019 in Hospital Serdang and Hospital Kuala Lumpur. Electron microscopy, immunohistochemistry, and clinical presentations were used to differentiate primary and secondary MGN, from which 611 and 457 primary and secondary subjects were diagnosed with primary and secondary GN, respectively. Primary MGN accounts for 13% of all the primary GN, while lupus nephritis (LN) accounts for 44.2% of all secondary GN followed by diabetes mellitus (25.6%). The proportions of primary and secondary MGN were 64.8% and 35.2%, respectively, with a male-to-female ratio of 1:1.1 in favor of females. The renal biopsy obtained from the registry of two prominent hospitals in Malaysia provided valuable prevalence and demonstrated changes in the prevalence of GN in Malaysia. Notwithstanding, immunoglobulin A nephropathy and LN remain the most common causes of primary and secondary GN in Malaysia.
    Matched MeSH terms: Kidney/pathology
  8. Ahmad Zawawi SS, Mohd Azram NAS, Sulong S, Zakaria AD, Lee YY, Che Jalil NA, et al.
    Asian Pac J Cancer Prev, 2023 Sep 01;24(9):3099-3107.
    PMID: 37774061 DOI: 10.31557/APJCP.2023.24.9.3099
    BACKGROUND: Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-β1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts.

    AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression.

    METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control.  Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium.

    RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01).

    CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.

    Matched MeSH terms: Fibroblasts/pathology
  9. Ch'ng CC
    Med J Malaysia, 2024 Mar;79(2):203-205.
    PMID: 38553927
    A balanced and diverse skin microbiome is pivotal for healthy skin. Dysregulation of the skin microbiome could disrupt the skin barrier function and result in the development of atopic dermatitis (AD), a common chronic and relapsing inflammatory skin disorder. Given the role that the skin microbiome plays in the initiation and maintenance of AD, maintaining a healthy skin microbiome is crucial for effective disease management. Specifically, current guidelines recommend emollients as the treatment mainstay in maintaining a functional skin barrier across disease severity. Emollient 'plus' or therapeutic moisturisers have recently emerged as the next-generation emollients that specifically aim to rebalance the skin microbiome and subsequently improve AD lesions. This article provides a quick overview of an emollient 'plus' or therapeutic moisturiser, discussing the clinical efficacy and tolerability of Lipikar Baume AP+M as a companion in AD management.
    Matched MeSH terms: Skin/pathology
  10. Shahrizaila N, Yuki N
    J Biomed Biotechnol, 2011;2011:829129.
    PMID: 21197269 DOI: 10.1155/2011/829129
    Molecular mimicry between self and microbial components has been proposed as the pathogenic mechanism of autoimmune diseases, and this hypothesis is proven in Guillain-Barré syndrome. Guillain-Barré syndrome, the most frequent cause of acute neuromuscular paralysis, sometimes occurs after Campylobacter jejuni enteritis. Gangliosides are predominantly cell-surface glycolipids highly expressed in nervous tissue, whilst lipo-oligosaccharides are major components of the Gram-negative bacterium C. jejuni outer membrane. IgG autoantibodies to GM1 ganglioside were found in the sera from patients with Guillain-Barré syndrome. Molecular mimicry was demonstrated between GM1 and lipo-oligosaccharide of C. jejuni isolated from the patients. Disease models by sensitization of rabbits with GM1 and C. jejuni lipo-oligosaccharide were established. Guillain-Barré syndrome provided the first verification that an autoimmune disease is triggered by molecular mimicry. Its disease models are helpful to further understand the molecular pathogenesis as well as to develop new treatments in Guillain-Barré syndrome.
    Matched MeSH terms: Guillain-Barre Syndrome/pathology*
  11. Law ZK, Appleton JP, Bath PM, Sprigg N
    Clin Med (Lond), 2017 Apr;17(2):166-172.
    PMID: 28365631 DOI: 10.7861/clinmedicine.17-2-166
    Managing acute intracerebral haemorrhage is a challenging task for physicians. Evidence shows that outcome can be improved with admission to an acute stroke unit and active care, including urgent reversal of anticoagulant effects and, potentially, intensive blood pressure reduction. Nevertheless, many management issues remain controversial, including the use of haemostatic therapy, selection of patients for neurosurgery and neurocritical care, the extent of investigations for underlying causes and the benefit versus risk of restarting antithrombotic therapy after an episode of intracerebral haemorrhage.
    Matched MeSH terms: Brain/pathology; Brain/physiopathology
  12. Kong P, Ahmad RE, Zulkifli A, Krishnan S, Nam HY, Kamarul T
    Joint Bone Spine, 2024 May;91(3):105642.
    PMID: 37739213 DOI: 10.1016/j.jbspin.2023.105642
    Osteoarthritis (OA) is the most prevalent chronic joint disease with an immense socioeconomic burden; however, no treatment has achieved complete success in effectively halting or reversing cartilage degradation, which is the central pathophysiological feature of OA. Chondrocytes loss or dysfunction is a significant contributing factor to the progressive cartilage deterioration as these sole resident cells have a crucial role to produce extracellular matrix proteins, thus maintaining cartilage structure and homeostasis. It has been previously suggested that death of chondrocytes occurring through apoptosis substantially contributes to cartilage degeneration. Although the occurrence of apoptosis in osteoarthritic cartilage and its correlation with cartilage degradation is evident, the causes of chondrocyte apoptosis leading to matrix loss are still not well-understood. Autophagy, an intracellular degradative mechanism that eliminates dysfunctional cytoplasmic components to aid cell survival in unfavourable conditions, is a potential therapeutic target to inhibit chondrocyte apoptosis and reduce OA severity. Despite accumulating evidence indicating significant cytoprotective effects of autophagy against chondrocyte apoptosis, the mechanistic link between autophagy and apoptosis in chondrocytes remains to be further explored. In this review, we summarize the relevant mechanistic events that perpetuate chondrocyte apoptosis and highlight the prominent role of autophagy in modulating these events to mitigate OA progression.
    Matched MeSH terms: Cartilage, Articular/pathology
  13. Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL
    Int J Mol Sci, 2019 Apr 10;20(7).
    PMID: 30974904 DOI: 10.3390/ijms20071784
    Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
    Matched MeSH terms: Mesenchymal Stromal Cells/pathology
  14. Sharma N, Gupta S, Gupta D, Gupta P, Juneja S, Shah A, et al.
    PLoS One, 2024;19(5):e0302880.
    PMID: 38718092 DOI: 10.1371/journal.pone.0302880
    Gastrointestinal (GI) cancer is leading general tumour in the Gastrointestinal tract, which is fourth significant reason of tumour death in men and women. The common cure for GI cancer is radiation treatment, which contains directing a high-energy X-ray beam onto the tumor while avoiding healthy organs. To provide high dosages of X-rays, a system needs for accurately segmenting the GI tract organs. The study presents a UMobileNetV2 model for semantic segmentation of small and large intestine and stomach in MRI images of the GI tract. The model uses MobileNetV2 as an encoder in the contraction path and UNet layers as a decoder in the expansion path. The UW-Madison database, which contains MRI scans from 85 patients and 38,496 images, is used for evaluation. This automated technology has the capability to enhance the pace of cancer therapy by aiding the radio oncologist in the process of segmenting the organs of the GI tract. The UMobileNetV2 model is compared to three transfer learning models: Xception, ResNet 101, and NASNet mobile, which are used as encoders in UNet architecture. The model is analyzed using three distinct optimizers, i.e., Adam, RMS, and SGD. The UMobileNetV2 model with the combination of Adam optimizer outperforms all other transfer learning models. It obtains a dice coefficient of 0.8984, an IoU of 0.8697, and a validation loss of 0.1310, proving its ability to reliably segment the stomach and intestines in MRI images of gastrointestinal cancer patients.
    Matched MeSH terms: Stomach/pathology
  15. Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM
    Metab Brain Dis, 2024 Jun;39(5):985-1004.
    PMID: 38842660 DOI: 10.1007/s11011-024-01368-x
    Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
    Matched MeSH terms: Brain/pathology
  16. Saied M, Najibullah M, Shabbir Z, Saleem A, Ali A, Azab WA
    Adv Tech Stand Neurosurg, 2024;52:229-244.
    PMID: 39017797 DOI: 10.1007/978-3-031-61925-0_16
    BACKGROUND: Fully endoscopic or endoscope-controlled approaches are essentially keyhole approaches in which rigid endoscopes are the sole visualization tools used during the whole procedure. At the early attempts of endoscope-assisted cranial surgery, it was noted that rigid endoscopes enabled overcoming the problem of suboptimal visualization when small exposures are used. The technical specifications and design of the currently available rigid endoscopes are associated with a group of unique features that define the endoscopic view and lay the basis for its superiority over the microscopic view during brain surgery. Fully endoscopic retrosigmoid approach for cerebellopontine angle tumors is a minimally invasive approach that is not routinely practiced by neurosurgeons, with few series published so far. Unfamiliarity with the technique, steep learning curve, and concerns about inadequate exposure, neurovascular injury, and decreased visibility may explain this fact. In this chapter we elaborate on the surgical technique and nuances of the fully endoscopic retrosigmoid approach and present an overview of the published series.

    METHODS: From a prospective database of endoscopic procedures maintained by the senior author, clinical data, imaging studies, operative charts, and videos of cases undergoing fully endoscopic retrosigmoid approach for cerebellopontine angle tumors were retrieved and analyzed. The pertinent literature was also reviewed.

    RESULTS: The surgical technique of the fully endoscopic retrosigmoid approach was formulated.

    CONCLUSION: The endoscopic technique has many advantages over the conventional procedures. In our hands, the technique has proven to be feasible, efficient, and minimally invasive with excellent results.

    Matched MeSH terms: Cerebellar Neoplasms/pathology
  17. Ismail UN, Azlan CA, Khairullah S, Azman RR, Omar NF, Md Shah MN, et al.
    J Magn Reson Imaging, 2024 Dec;60(6):2447-2456.
    PMID: 38556790 DOI: 10.1002/jmri.29366
    BACKGROUND: Growing evidence suggests that marrow adipocytes play an active role in the regulation of bone metabolism and hematopoiesis. However, research on the relationship between bone and fat in the context of hematological diseases, particularly β-thalassemia, remains limited.

    PURPOSE: To investigate the relationship between marrow fat and cortical bone thickness in β-thalassemia and to identify key determinants influencing these variables.

    STUDY TYPE: Prospective.

    SUBJECTS: Thirty-five subjects in four subject groups of increasing disease severity: 6 healthy control (25.0 ± 5.3 years, 2 male), 4 β-thalassemia minor, 13 intermedia, and 12 major (29.1 ± 6.4 years, 15 male).

    FIELD STRENGTH/SEQUENCE: 3.0 T, 3D fast low angle shot sequence and T1-weighted turbo spin echo.

    ASSESSMENT: Analyses on proton density fat fraction (PDFF) and R2* values in femur subregions (femoral head, greater trochanter, intertrochanteric, diaphysis, distal) and cortical thickness (CBI) of the subjects' left femur. Clinical data such as age, sex, body mass index (BMI), and disease severity were also included.

    STATISTICAL TESTS: One-way analysis of variance (ANOVA), mixed ANOVA, Pearson correlation and multiple regression. P-values <0.05 were considered significant.

    RESULTS: Bone marrow PDFF significantly varied between the femur subregions, F(2.89,89.63) = 44.185 and disease severity, F(1,3) = 12.357. A significant interaction between subject groups and femur subregions on bone marrow PDFF was observed, F(8.67,89.63) = 3.723. Notably, a moderate positive correlation was observed between PDFF and CBI (r = 0.33-0.45). Multiple regression models for both PDFF (R2 = 0.476, F(13,151) = 10.547) and CBI (R2 = 0.477, F(13,151) = 10.580) were significant. Significant predictors for PDFF were disease severity (βTMi = 0.36, βTMa = 0.17), CBI (β = 0.24), R2* (β = -0.32), and height (β = -0.29) while for CBI, the significant determinants were sex (β = -0.27), BMI (β = 0.55), disease severity (βTMi = 2.15), and PDFF (β = 0.25).

    DATA CONCLUSION: This study revealed a positive correlation between bone marrow fat fraction and cortical bone thickness in β-thalassemia with varying disease severity, potentially indicating a complex interplay between bone health and marrow composition.

    EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

    Matched MeSH terms: Femur/pathology
  18. Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, et al.
    Emerg Infect Dis, 2012 Dec;18(12):1983-93.
    PMID: 23171621 DOI: 10.3201/eid1812.120875
    Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.
    Matched MeSH terms: Choroid Plexus/pathology; Endothelium/pathology; Ependyma/pathology; Neurons/pathology; Palatine Tonsil/pathology; Endothelial Cells/pathology; Henipavirus Infections/pathology
  19. Ametefe DS, Sarnin SS, Ali DM, Ametefe GD, John D, Aliu AA, et al.
    Int J Lab Hematol, 2024 Oct;46(5):837-849.
    PMID: 38726705 DOI: 10.1111/ijlh.14305
    INTRODUCTION: Acute lymphoblastic leukemia (ALL) presents a formidable challenge in hematological malignancies, necessitating swift and precise diagnostic techniques for effective intervention. The conventional manual microscopy of blood smears, although widely practiced, suffers from significant limitations including labor-intensity and susceptibility to human error, particularly in distinguishing the subtle differences between normal and leukemic cells.

    METHODS: To overcome these limitations, our research introduces the ALLDet classifier, an innovative tool employing deep transfer learning for the automated analysis and categorization of ALL from White Blood Cell (WBC) nuclei images. Our investigation encompassed the evaluation of nine state-of-the-art pre-trained convolutional neural network (CNN) models, namely VGG16, VGG19, ResNet50, ResNet101, DenseNet121, DenseNet201, Xception, MobileNet, and EfficientNetB3. We augmented this approach by incorporating a sophisticated contour-based segmentation technique, derived from the Chan-Vese model, aimed at the meticulous segmentation of blast cell nuclei in blood smear images, thereby enhancing the accuracy of our analysis.

    RESULTS: The empirical assessment of these methodologies underscored the superior performance of the EfficientNetB3 model, which demonstrated exceptional metrics: a recall specificity of 98.5%, precision of 95.86%, F1-score of 97.16%, and an overall accuracy rate of 97.13%. The Chan-Vese model's adaptability to the irregular shapes of blast cells and its noise-resistant segmentation capability were key to capturing the complex morphological changes essential for accurate segmentation.

    CONCLUSION: The combined application of the ALLDet classifier, powered by EfficientNetB3, with our advanced segmentation approach, emerges as a formidable advancement in the early detection and accurate diagnosis of ALL. This breakthrough not only signifies a pivotal leap in leukemia diagnostic methodologies but also holds the promise of significantly elevating the standards of patient care through the provision of timely and precise diagnoses. The implications of this study extend beyond immediate clinical utility, paving the way for future research to further refine and enhance the capabilities of artificial intelligence in medical diagnostics.

    Matched MeSH terms: Leukocytes/pathology
  20. Zhou J, Liu C, Amornphimoltham P, Cheong SC, Gutkind JS, Chen Q, et al.
    J Dent Res, 2024 Jun;103(6):585-595.
    PMID: 38722077 DOI: 10.1177/00220345241240997
    The prognosis and survival rate of head and neck squamous cell carcinoma (HNSCC) have remained unchanged for years, and the pathogenesis of HNSCC is still not fully understood, necessitating further research. An ideal animal model that accurately replicates the complex microenvironment of HNSCC is urgently needed. Among all the animal models for preclinical cancer research, tumor-bearing mouse models are the best known and widely used due to their high similarity to humans. Currently, mouse models for HNSCC can be broadly categorized into chemical-induced models, genetically engineered mouse models (GEMMs), and transplanted mouse models, each with its distinct advantages and limitations. In chemical-induced models, the carcinogen spontaneously initiates tumor formation through a multistep process. The resemblance of this model to human carcinogenesis renders it an ideal preclinical platform for studying HNSCC initiation and progression from precancerous lesions. The major drawback is that these models are time-consuming and, like human cancer, unpredictable in terms of timing, location, and number of lesions. GEMMs involve transgenic and knockout mice with gene modifications, leading to malignant transformation within a tumor microenvironment that recapitulates tumorigenesis in vivo, including their interaction with the immune system. However, most HNSCC GEMMs exhibit low tumor incidence and limited prognostic significance when translated to clinical studies. Transplanted mouse models are the most widely used in cancer research due to their consistency, availability, and efficiency. Based on the donor and recipient species matching, transplanted mouse models can be divided into xenografts and syngeneic models. In the latter, transplanted cells and host are from the same strain, making syngeneic models relevant to study functional immune system. In this review, we provide a comprehensive summary of the characteristics, establishment methods, and potential applications of these different HNSCC mouse models, aiming to assist researchers in choosing suitable animal models for their research.
    Matched MeSH terms: Carcinoma, Squamous Cell/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links