A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.
Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.
Vitamin E, a potent antioxidant consisting of four isomers each (α, β, γ, δ) of tocopherol (T) and tocotrienol (T3), is found naturally in plant oils at different concentrations. In this study, four semi-purified isonitrogenous and isolipidic (10 %) diets containing canola oil, cold-pressed soybean oil, wheat germ oil, or palm fatty acid distillates (PFAD) as the sole vitamin E source were fed to triplicate groups of red hybrid tilapia (Oreochromis sp.) fingerlings (14.82 ± 0.05 g) for 45 days. Vitamin E concentrations and composition were measured in the muscle, liver, skin, and adipose tissue. Deposition of α-T (53.4-93.1 % of total vitamin E) predominated over deposition of other isomers, except in the liver of fish fed the SBO diet, where α-T and γ-T deposition was in the ratio 40:60. T3 deposition (2.6-29.4 %) was only detected in tissues of fish fed the PFAD diet; adipose tissue was the major storage depot. Fish fed the SBO diet contained significantly more (P
Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative.
Essential oils obtained by hydrodistillation from the rhizomes of Etlingera pyramidosphaera (K. Schum.) R. M. Sm, E. megalocheilos (Griff.) A.D. Poulsen, comb. nov., E. coccinea (Blume) S. Sakai & Nagam, E. elatior (Jack) R. M. Sm, and E. brevilabrum (Valeton) R. M. Sm were analyzed by GCMS. The highest oil yield was obtained from E. pyramidosphaera (0.45%), followed by E. elatior (0.38%), E. coccinea (0.30%), E. brevilabrum (0.28%) and E. megalocheilos (0.25%). The major constituents of the essential oils were oxygenated monoterpenes, followed by sesquiterpenes, oxygenated sesquiterpenes, oxygenated diterpenes and diterpenes. The essential oils from E. pyramidosphaera and E. brevilabrum exhibited the best cytotoxicity against MCF 7 (LC50: 7.5 +/- 0.5 mg mL(-1)) and HL 60 (LC50: 5.0 mg mL(-1)), respectively. Strong inhibition was also observed for the essential oils of E. coccinea and E. megalocheilos against Staphylococcus aureus (MIC: 8.0 +/- 0.5 mg mL(-1), and 5.0 +/- 0.5 mg mL(-1)) and Streptococcus pyrogenes (MIC: 6.0 +/- 0.5 mg mL(-1) and 8.0 +/- 0.5 mg mL(-1)).
The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (ΔH(f)) of 100.9 (± 0.1) J g(-1).
Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system.
The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.
Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
In silico and experimental investigations were conducted to explore the effects of substituting hydrophobic residues, Val, Met, Leu, Ile, Trp, and Phe into Gln 114 of T1 lipase. The in silico investigations accurately predicted the enzymatic characteristics of the mutants in the experimental studies and provided rationalization for some of the experimental observations. Substitution with Leu successfully improved the conformational stability and enzymatic characteristics of T1 lipase. However, replacement of Gln114 with Trp negatively affected T1 lipase and resulted in the largest disruption of protein stability, diminished lipase activity and inferior enzymatic characteristics. These results suggested that the substitution of a larger residue in a densely packed area of the protein core can have considerable effects on the structure and function of an enzyme. This is especially true when the residue is next to the catalytic serine as demonstrated with the Phe and Trp mutation.
A 16-month-old child developed a brief generalised tonic-clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1 week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome.
Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO(3) and H(2)SO(4). The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III).
Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.
A simple micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of 2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF), 5-hydroxymethylfurfural (5-HMF), 2-furoic acid (2-FA) and 3-furoic acid (3-FA) in honey and vegetable oils is described. Parameters affecting the separation such as pH, buffer and surfactant concentrations, applied voltage, capillary temperature, injection time and capillary length were studied and optimized. The separation was carried out in normal polarity mode at 20 °C, 22 kV and using hydrodynamic injection (17 s). The separation was achieved in a bare fused-silica capillary (46 cm × 50 μm i.d.) with a background electrolyte of 75 mM phosphoric acid (pH 7.3), containing 200 mM of sodium dodecyl sulphate (SDS). The detection wavelengths were at 200 nm (2-FA and 3-FA) and 280 nm (2-F, 3-F, 5-MF, 5-HMF). The furfurals were well separated in less than 20 min. The method was validated in terms of linearity, limit of detection and quantitation, precision and recoveries. Calibration curves of the six furfurals were well correlated (r(2)>0.991) within the range 1-25 μg mL(-1). Relative standard deviations of intra- and inter-day migration times and corrected peak areas ≤9.96% were achieved. The limit of detection (signal:noise, 3) was 0.33-0.70 μg mL(-1) whereas the limit of quantitation (signal:noise, 10) was 1.00-2.12 μg mL(-1). The method was applied to the determination of furanic compounds in honeys and vegetable oils (palm, walnut, grape seed and rapeseed). The effects of thermal treatment and gamma irradiation on the formation of the furanic compounds in honey were also investigated.
Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC(50) values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals.
Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.
This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
A 6-month experiment with nine dietary treatments was conducted to determine amounts of S plus Mo supplements required to maintain normal hepatic concentrations of Cu and Mo and to prevent chronic Cu toxicity in lambs fed palm kernel cake (PKC) diets. All diets consisted of PKC supplemented with minerals and vitamins, and with appropriate amounts per kg DM of S (level 0 or level 1 = 1 g) as sodium sulfate and/or Mo (level 0; level 1 = 4 mg; level 2 = 8 mg; level 3 = 16 mg; level 4 = 32 mg) as ammonium molybdate to form treatments S0Mo1, S0Mo2, S0Mo3, S0Mo4, S1Mo0, S1Mo1, S1Mo2, S1Mo3 and S1Mo4.There was no effect (P>0·05) of dietary treatments on the growth performance of the lambs. The dietary supplement of 1 g S plus 8 mg Mo per kg dietary DM (treatment S1Mo2) prevented accumulation of Cu in the liver without elevation of the concentration of Mo (P>0·05). The treatments S0Mo1, S0Mo2 and S0Mo3 increased (P
The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions.
In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.