Displaying publications 881 - 900 of 921 in total

Abstract:
Sort:
  1. Teow SY, Ali SA
    Pak J Pharm Sci, 2016 Nov;29(6):2119-2124.
    PMID: 28375134
    Peptides derived from HIV-1 transmembrane proteins have been extensively studied for antimicrobial activities, and they are known as antimicrobial peptides (AMPs). These AMPs have also been reported to potently combat the drug-resistant microbes. In this study, we demonstrated that peptide #6383 originated from HIV-1 MN strain membrane-spanning domain of gp41 was active (2-log reductions) at 100βg/mL (56.5βM) against methicillin-resistant Staphylococcus aureus (MRSA) in 10% and 50% human plasma-supplemented phosphate buffered saline (PBS). The activity was further enhanced (3-log reductions) in the presence of 5% human serum albumin (HSA) alone. All bactericidal activities were achieved within 6 hours. At 100μg/mL, the peptide showed only 13% toxicity against human erythrocytes. This peptide can serve as an attractive template for a design of a novel peptide antibiotic against drug-resistant bacteria. By sequence-specific engineering or modifications, we anticipated that the bactericidal activity and the reduced toxicity against human erythrocytes will be improved.
    Matched MeSH terms: Kinetics
  2. Bozdag M, Alafeefy AM, Altamimi AM, Carta F, Supuran CT, Vullo D
    Bioorg Med Chem, 2017 05 15;25(10):2782-2788.
    PMID: 28389112 DOI: 10.1016/j.bmc.2017.03.054
    We report a series of novel metanilamide-based derivatives 3a-q bearing the 2-mercapto-4-oxo-4H-quinazolin-3-yl moiety as tail. All compounds were synthesized by means of straightforward condensation procedures and were investigated in vitro for their inhibition potency against the human (h) carbonic anhydrase (CA; EC 4.2.1.1.1) isoforms I, II, IX and XII. Among all compounds tested the 6-iodo 3g and the 7-fluoro 3i derivatives were the most potent inhibitors against the tumor associated CA IX and XII isoform (KIs 1.5 and 2.7nM respectively for the hCA IX and KIs 0.57 and 1.9nM respectively for the hCA XII). The kinetic data reported here strongly support compounds of this type for their future development as radiotracers in tumor pathologies which are strictly dependent on the enzymatic activity of the hCA IX and XII isoforms.
    Matched MeSH terms: Kinetics
  3. Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I, et al.
    Int J Biol Macromol, 2017 Oct;103:441-450.
    PMID: 28526350 DOI: 10.1016/j.ijbiomac.2017.05.061
    This deals with fabrication of macromolecular prodrugs (MPDs) of salicylic acid (SA) and aspirin (ASP) based on a hydrophilic cellulose ether, hydroxyethyl cellulose (HEC). Degrees of substitution (DS) of SA and ASP per HEC repeating unit (HEC-RU) were achieved ranging from 0.60 to 2.18 and 0.53 to1.50, respectively. The amphiphilic HEC-SA conjugate 2 assembled into nanowire-like structures, while HEC-ASP conjugate 6 formed nanoparticles (diameter 300-00nm) at a water/DMSO interface. After oral administration in rabbit models, conjugates 2 and 6 showed plasma half-life of 6.96 and 7.01h with maximum plasma concentration (Cmax) of 15.27 and 23.01μg L-1, respectively, and each reached peak plasma concentration (tmax) at 4.0h. Immunomodulatory assays (interleukin 6 and tumor necrosis factor-α values) revealed that anti-inflammatory properties of SA and ASP were unaltered in conjugates. Swelling inhibition of 61 and 71% was observed for conjugates 2 and 6, respectively, in a carrageenan induced paw edema test. Cytotoxic profiling (MTT assay) showed that conjugates were safe for administration in the concentration range of 2-10mM up to 24h. Thermal analyses revealed that Tdm values of SA and ASP conjugates were increased by 99 and 154̊C, respectively, indicating extraordinary thermal stability imparted to drugs after MPD formation.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics; Kinetics; Salicylates/pharmacokinetics
  4. Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF
    Int J Biol Macromol, 2017 Apr;97:131-140.
    PMID: 28064048 DOI: 10.1016/j.ijbiomac.2016.12.079
    Natural polymer-based hydrogel films have great potential for biomedical applications and are good candidates for wound dressings. In this study, we aimed to develop simvastatin-loaded crosslinked alginate-pectin hydrogel films by ionic crosslinking to improve the mechanical characteristics, wound fluid uptake and drug release behavior. Alginate-pectin hydrocolloid films were chemically crosslinked by immersing in different concentrations of CaCl2 (0.5-3% w/v) for 2-20min. The degree of crosslinking was influenced by both contact time and CaCl2 concentration. The optimized conditions for crosslinking were 0.5% and 1% (CaCl2) for 2min. The optimized hydrogel films were then characterized for their physical, mechanical, morphological, thermal, in vitro drug release, and cytocompatibility profiles. Crosslinking improved the mechanical profile and wound fluid uptake capacity of dressings. The hydrogel films were able to maintain their physical integrity during use, and the best results were obtained with the film in which the extent of crosslinking was low (0.5%). Thermal analysis confirmed that the crosslinking process enhanced the thermal stability of hydrogel films. Sustained, slow release of simvastatin was obtained from the crosslinked films and in vitro cytotoxicity assay demonstrated that the hydrogel films were non-toxic.
    Matched MeSH terms: Kinetics
  5. SreeHarsha N, Maheshwari R, Al-Dhubiab BE, Tekade M, Sharma MC, Venugopala KN, et al.
    Int J Nanomedicine, 2019;14:7419-7429.
    PMID: 31686814 DOI: 10.2147/IJN.S211224
    Background: Prostate cancer (PC) has the highest prevalence in men and accounts for a high rate of neoplasia-related death. Doxorubicin (DOX) is one of the most widely used anti-neoplastic drugs for prostate cancer among others. However, it has low specificity and many side effects and affects normal cells. More recently, there have been newly developed drug delivery tools which are graphene or graphene-based, used to increase the specificity of the delivered drug molecules. The graphene derivatives possess both π-π stacking and increased hydrophobicity, factors that increase the likelihood of drug delivery. Despite this, the hydrophilicity of graphene remains problematic, as it induced problems with stability. For this reason, the use of a chitosan coating remains one way to modify the surface features of graphene.

    Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed.

    Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (~65%) and releasing it in a controlled manner (~50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells.

    Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.

    Matched MeSH terms: Kinetics
  6. Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, et al.
    J Infect Dis, 2019 11 06;220(12):1950-1961.
    PMID: 31419296 DOI: 10.1093/infdis/jiz407
    BACKGROUND: Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate.

    METHODS: Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay.

    RESULTS: The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28.

    CONCLUSION: Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.

    Matched MeSH terms: Kinetics
  7. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Kinetics
  8. Ashri A, Amalina N, Kamil A, Fazry S, Sairi MF, Nazar MF, et al.
    Int J Biol Macromol, 2018 Feb;107(Pt B):2412-2421.
    PMID: 29056465 DOI: 10.1016/j.ijbiomac.2017.10.125
    Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
    Matched MeSH terms: Kinetics
  9. Jahanshahi P, Wei Q, Jie Z, Ghomeishi M, Sekaran SD, Mahamd Adikan FR
    Bioengineered, 2017 May 04;8(3):239-247.
    PMID: 27533620 DOI: 10.1080/21655979.2016.1223413
    Surface plasmon resonance (SPR) sensing is recently emerging as a valuable technique for measuring the binding constants, association and dissociation rate constants, and stoichimetry for a binding interaction kinetics in a number of emerging biological areas. This technique can be applied to the study of immune system diseases in order to contribute to improved understanding and evaluation of binding parameters for a variety of interactions between antigens and antibodies biochemically and clinically. Since the binding constants determination of an anti-protein dengue antibody (Ab) to a protein dengue antigen (Ag) is mostly complicated, the SPR technique aids a determination of binding parameters directly for a variety of particular dengue Ag_Ab interactions in the real-time. The study highlights the doctrine of real-time dengue Ag_Ab interaction kinetics as well as to determine the binding parameters that is performed with SPR technique. In addition, this article presents a precise prediction as a reference curve for determination of dengue sample concentration.
    Matched MeSH terms: Kinetics
  10. Khairudin N, Basri M, Fard Masoumi HR, Samson S, Ashari SE
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438284 DOI: 10.3390/molecules23020397
    Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R² of 0.9732).The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3) was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability) value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 μg/mL, whereas the IC50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.
    Matched MeSH terms: Kinetics
  11. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Kinetics
  12. Neoh CH, Yahya A, Adnan R, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 May;20(5):2912-23.
    PMID: 23054764 DOI: 10.1007/s11356-012-1193-5
    The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.
    Matched MeSH terms: Kinetics
  13. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 Jul;20(7):5056-66.
    PMID: 23334551 DOI: 10.1007/s11356-013-1476-5
    Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
    Matched MeSH terms: Kinetics
  14. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Kinetics
  15. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S
    Int J Nanomedicine, 2016;11:3417-34.
    PMID: 27555765 DOI: 10.2147/IJN.S112045
    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
    Matched MeSH terms: Kinetics
  16. Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, et al.
    J Cell Physiol, 2019 Apr;234(4):3921-3932.
    PMID: 30146680 DOI: 10.1002/jcp.27183
    Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p 
    Matched MeSH terms: Kinetics
  17. Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, et al.
    Int J Nanomedicine, 2017;12:2361-2372.
    PMID: 28392693 DOI: 10.2147/IJN.S126245
    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.
    Matched MeSH terms: Kinetics
  18. Mphahlele MJ, Agbo EN, Choong YS
    Molecules, 2021 May 04;26(9).
    PMID: 34064448 DOI: 10.3390/molecules26092692
    The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.
    Matched MeSH terms: Kinetics; Chalcones/pharmacokinetics
  19. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS
    Molecules, 2017 Aug 12;22(8).
    PMID: 28805665 DOI: 10.3390/molecules22081312
    The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase's conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene.
    Matched MeSH terms: Kinetics
  20. Tan YY, Wade JD, Tregear GW, Summers RJ
    Br J Pharmacol, 1999 May;127(1):91-8.
    PMID: 10369460
    The binding characteristics of the relaxin receptor in rat atria, uterus and cortex were studied using a [33P]-labelled human gene 2 relaxin (B33) and quantitative receptor autoradiography. The binding kinetics of [33P]-human gene 2 relaxin (B33) were investigated in slide-mounted rat atrial sections. The binding achieved equilibrium after 60 min incubation at room temperature (23+/-1 degrees C) and dissociated slowly. The association and dissociation rate constants were 4.31+/-0.34x10(8) M(-1) x min(-1) and 1.55+/-0.38x10(-3) min(-1) respectively. Thus, the kinetic dissociation constant was 3.46+/-0.59 pM. Binding was saturable to a single population of non-interacting sites throughout atria, in uterine myometrium and the 5th layer of cerebral cortex. The binding affinities (pK(D)) of [33P]-human gene 2 relaxin (B33) were 8.92+/-0.09 in atrial myocardium and 8.79+/-0.04 in cerebral cortex of male rats, and 8.79+/-0.10 in uterine myometrium. Receptor densities in the cerebral cortex and atria were higher than in uterine myometrium, indicating that relaxin also has important roles in non-reproductive tissues. In male rats, treatment with 17beta-oestradiol (20 microg in 0.1 ml sesame oil s.c., 18-24 h) significantly decreased the density of relaxin receptors in atria and cerebral cortex. Identical treatment in female rats had no significant effect in atria and cerebral cortex, but it significantly increased the density of relaxin receptors in uterine myometrium. Relaxin binding was competitively displaced by porcine and rat native relaxins. Porcine native relaxin binds to the relaxin receptor in male rat atria (8.90+/-0.02), and cerebral cortex (8.90+/-0.03) and uterine myometrium (8.89+/-0.03) with affinities not significantly different from human gene 2 (B33) relaxin. Nevertheless, rat relaxin binds to the receptors with affinities (8.35+/-0.09 in atria, 8.22+/-0.07 in cerebral cortex and 8.48+/-0.06 in uterine myometrium) significantly less than human gene 2 (B33) and porcine relaxins. Quantitative receptor autoradiography is the method of choice for measurement of affinities and densities of relaxin receptor in atria, uterine myometrium and cerebral cortex. High densities were found in all these tissues. 17beta-oestradiol treatment produced complex effects where it increased the densities of relaxin receptors in uterus but decreased those in atria and cerebral cortex of the male rats, and had no effect on the atria and cerebral cortex of the female rats.
    Matched MeSH terms: Kinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links