Displaying publications 881 - 900 of 1086 in total

Abstract:
Sort:
  1. Khor, Hun Teik, Ng, Theng Theng, Rajendran, Raajeswari
    Malays J Nutr, 2002;8(2):157-166.
    MyJurnal
    Tocotrienols and tocopherols are isoforms of vitamin E. Vitamin E may exhibit antioxidant, prooxidant and non-antioxidant activities depending upon circumstances. In this study, the effect of tocotrienols and α-tocopherol on the activities of HMG CoA reductase and cholesterol 7 α-hydroxylase was investigated. Pure tocotrienols were isolated from palm fatty acid distillate and pure α-tocopherol was obtained commercially. Guinea pigs were treated with different dosages of tocotrienols and α-tocopherol. After the treatment period, animals were sacrificed and liver microsomes were prepared. HMG CoA reductase and cholesterol 7α-hydroxylase were assayed using tracer techniques. Our results showed that the effects of tocotrienols and α-tocopherol on the activities of both the enzymes were dose-dependent. At low dosages, both tocotrienols and α-tocopherol exhibited an inhibitory effect on both the enzymes. Moreover, tocotrienols were a much stronger inhibitors than α-tocopherol. At high dosages, on the other hand, tocotrienols and α-tocopherol showed opposite effects on the enzymes. While tocotrienols continued to exhibit an inhibitory effect, α-tocopherol actually exhibited a stimulatory effect on both the enzymes. A possible explanation for this observation is suggested.
    Matched MeSH terms: Reactive Oxygen Species
  2. Lua YH, Ong WW, Wong HK, Chew CH
    Trop Life Sci Res, 2020 Oct;31(3):63-75.
    PMID: 33214856 DOI: 10.21315/tlsr2020.31.3.5
    The metabolism of alcohol involves cytochrome P450 2E1 (CYP2E1)-induced oxidative stress, with the association of phosphatidylinositol-3-kinases (PI3K) and nuclear factor kappa B (NFκB) signalling pathways. CYP2E1 is primarily involved in the microsomal ethanol oxidising system, which generates massive reactive oxygen species (ROS) and ultimately leads to oxidative stress and tissue damage. Lauric acid, a major fatty acid in palm kernel oil, has been shown as a potential antioxidant. Here, we aimed to evaluate the use of lauric acid as a potential antioxidant against ethanol-mediated oxidative stress by investigating its effect on CYP2E1 mRNA expression and the signalling pathway in ethanol-induced HepG2 cells. HepG2 cells were firstly treated with different concentrations of ethanol, and subsequently co-treated with different concentrations of lauric acid for 24 h. Total cellular RNA and total protein were extracted, and qPCR and Western blot was carried out. Ethanol induced the mRNA expression of CYP2E1 significantly, but lauric acid was able to downregulate the induced CYP2E1 expression in a dose-dependent manner. Similarly, Western blot analysis and densitometry analysis showed that the phosphorylated PI3K p85 (Tyr458) protein was significantly elevated in ethanol-treated HepG2 cells, but co-treatment with lauric acid repressed the activation of PI3K. However, there was no significant difference in NFκB pathway, in which the normalised NFκB p105 (Ser933) phosphorylation remained constant in any treatment conditions in this study. This suggests that ethanol induced CYP2E1 expression by activating PI3K p85 (Tyr458) pathway, but not the NFκB p105 (Ser933) pathway in HepG2 cells.
    Matched MeSH terms: Reactive Oxygen Species
  3. Ait Abderrahim L, Taïbi K, Abderrahim NA, Alomery AM, Abdellah F, Alhazmi AS, et al.
    Toxicon, 2019 Aug 26;169:38-44.
    PMID: 31465783 DOI: 10.1016/j.toxicon.2019.08.005
    Microcystin Leucine-Arginine (MC-LR) is a toxin produced by the cyanobacteria Microcystis aeruginosa. It is the most encountered and toxic type of cyanotoxins. Oxidative stress was shown to play a role in the pathogenesis of microcystin LR by the induction of intracellular reactive oxygen species (ROS) formation that oxidize and damage cellular macromolecules. In the present study we examined the effect of acute MC-LR dose on the cardiac muscle of BALB/c mice. Afterwards, melatonin and N-acetyl cysteine (NAC) were assayed and evaluated as potential protective and antioxidant agents against damages generated by MC-LR. For this purpose, thirty mice were assigned into six groups of five mice each. The effect of MC-LR was first compared to the control group supplied with distilled water, then compared to the other groups supplied with melatonin and NAC. The experiment lasted 10 days after which animals were euthanized. Biomarkers of toxicity such as alkaline phosphatase activity, lipid peroxidation, protein carbonyl content, reduced glutathione content, serum lactate dehydrogenase and serum sorbitol dehydrogenase were assayed. Results showed that toxin treated mice have experienced significant oxidative damage in their myocardial tissue as revealed by noticeable levels of oxidative stress biomarkers and by the reduction in alkaline phosphatase activity. Whereas, melatonin and NAC treated mice manifested lesser oxidative damages. Our findings suggest a potential therapeutic use of melatonin and N-acetyl cysteine as antioxidant protective agents against oxidative damage induced by MC-LR.
    Matched MeSH terms: Reactive Oxygen Species
  4. Tanaka KI, Shimoda M, Chuang VTG, Nishida K, Kawahara M, Ishida T, et al.
    Int J Pharm, 2018 Jan 15;535(1-2):140-147.
    PMID: 29122608 DOI: 10.1016/j.ijpharm.2017.11.012
    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu2+/Zn2+-induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu2+/Zn2+-induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu2+/Zn2+-induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu2+ and Zn2+ after Cu2+/Zn2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu2+/Zn2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu2+/Zn2+-induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases.
    Matched MeSH terms: Reactive Oxygen Species
  5. Aljuboury DA, Palaniandy P, Abdul Aziz HB, Feroz S, Abu Amr SS
    Water Sci Technol, 2016 Sep;74(6):1312-1325.
    PMID: 27685961
    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO2/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  6. Siah, W.M., Aminah, A., Ishak, A.
    MyJurnal
    A new patent pending process is proposed in this study to produce edible film directly from seaweed (Kappaphycus alvarezii). Seaweed together with other ingredients has been used to produce the film through casting technique. Physical and mechanical tests were performed on the edible films to examine the thickness, colour, transparency, solubility, tensile strength,
    elongation at break, water permeability rate, oxygen permeability rate and surface morphology. Produced film was transparent, stretchable, sealable and have basic properties as a film for food packaging. This study suggests that the edible film could be used as novel materials in food industry as sachet/pouch/bag for instant coffee, breakfast cereals drinks, seasoning powder,
    candies etc; as wrapper for seasoning cube and chocolate; as interleaf for frozen foods such as burger patties to avoid the patties from sticking together; and also as material for edible logo in bakeries products. Other than that, the edible film also could be used in pharmaceutical industry as functional strips such as oral freshener strips and drug strips. In cosmetic and toiletries industries, the edible film could be used to produce facial mask and bag for pre-portioned detergent. Compared with edible film developed earlier using alginate and carrageenan, film developed in this research used seaweed directly. The developed film reduced the need to extract the alginate and carrageenan, making material preparation easier and cheaper.
    Matched MeSH terms: Oxygen
  7. Ariff, M.S., Mai Ashikin, N.T., Maryamjameelah, R., Bushra, J., Wan Azman, W.A.
    MyJurnal
    Qur’anic verses recitations to ill patients are practiced by many Muslims as a form of healing and worship. The effectiveness has been observed in many medical institutions; however, it has never been objectively measured and documented. This pilot study was conducted to construct a methodological approach to evaluate the therapeutic effects of Yasiin recitation on the haemodynamics of critically ill patients. Methods: Ventilated Muslim patients in coronary care unit of a teaching hospital were evaluated. Yasiin was recited twice; by one of the researchers and then by the patients’ relatives. Mean arterial blood pressure, pulse rate, oxygen saturation level and electrocardiographic changes, were observed. The difference of the parameters before and during recitation was analysed. Results: Five patients fulfilling the selection criteria were selected; two acute myocardial infarctions, two congestive cardiac failures, and a third-degree atrioventricular block. Based on a non-parametric two-related-sample test, the haemodynamic parameters were not significantly affected by Yaasiin recitation. At the end of the study, two of the patients passed away, one patient was extubated and survived. Two patients were still on ventilators when the study had been completed. Limitations in the study were observed and highlighted in explaining the equivocal results. Conclusions: The effect of Yasiin recitation on heamodynamics of patients was not proven in this study. Further refinements might be needed based upon the observation on limitations encountered. It is hoped that this humble effort would pave the way for further studies to explore this field.
    Matched MeSH terms: Oxygen
  8. Dasmawati Mohamad, Wan Suzaini Wan Hamzah, Wan Rosli Wan Daud, Zainul Ahmad Rajion, Wan Zaripah Wan Bakar, Mazlan Ibrahim
    MyJurnal
    The aims of this study were to fabricate cellulose acetate (CA) film from oil palm empty fruit bunch (OP-EPB), as well as to characterize and evaluate their biocompatibility. Several processes were carried out, and these included prehydrolysis-soda method, chlorine free bleaching method, including oxygen, ozone and peroxide, to produce the cellulose pulp. Then, a liquid phase acetylation method was applied through acetic acid-acetic anhydride-sulphuric acid. Triethyl citrate (TEC) ester was used as additive at different percentages of 10, 20, 30 and 40 wt%. The film produced was characterized by FTIR to identify the functional group of the CA film and their tensile properties were further characterized. Biocompatibility of the film was evaluated using cytotoxicity test. Stem cell derived from human deciduous teeth (SHED) was used with MTS assay. The results showed at 30% of TEC, the tensile strength and elongation of CA (OP-EFB) film was at the optimum and is therefore suitable to be used in dental application. The cytotoxicity evaluated showed that the fabricated CA (OP-EFB) films were non-toxic up to the concentration tested, and are thus compatible with SHED.
    Matched MeSH terms: Oxygen
  9. Kawai M, Nagao N, Kawasaki N, Imai A, Toda T
    J Environ Manage, 2016 Oct 01;181:838-846.
    PMID: 27449962 DOI: 10.1016/j.jenvman.2016.06.057
    The recalcitrant landfill leachate was anaerobically digested at various mixing ratios with labile synthetic wastewater to evaluate the degradation properties of recalcitrant wastewater. The proportion of leachate to the digestion system was increased in three equal steps, starting from 0% to 100%, and later decreased back to 0% with the same steps. The chemical oxygen demand (COD) for organic carbon and other components were calculated by analyzing the COD and dissolved organic carbon (DOC), and the removal efficiencies of COD carbon and COD others were evaluated separately. The degradation properties of COD carbon and COD others shifted owing to changing of substrate degradability, and the removal efficiencies of COD carbon and COD others were improved after supplying 100% recalcitrant wastewater. The UV absorptive property and total organic carbon (TOC) of each molecular size using high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with UVA and TOC detectors were also investigated, and the degradability of different molecular sizes was determined. Although the SEC system detected extracellular polymeric substances (EPS), which are produced by microbes in stressful environments, during early stages of the experiment, EPS were not detected after feeding 100% recalcitrant wastewater. These results suggest that the microbes had acclimatized to the recalcitrant wastewater degradation. The high removal rates of both COD carbon and COD others were sustained when the proportion of labile wastewater in the substrate was 33%, indicating that the effective removal of recalcitrant COD might be controlled by changing the substrate's degradability.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  10. Erabee IK, Ahsan A, Jose B, Arunkumar T, Sathyamurthy R, Idrus S, et al.
    PMID: 28471297 DOI: 10.1080/10934529.2017.1303309
    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  11. Nur Ikhwan Mohamad, Rumpf, Michael C., Tan, Erik C.H., Abas, Nicholas Garaman
    Movement Health & Exercise, 2015;4(1):15-26.
    MyJurnal
    This paper aims to determine acute responses of standardized resistance training load on cardio-respiratory variables in recreationally active participants. The methodology involved twelve recreationally active males with an age of 23.5 (± 4.07) years, a mass of 70.5 (± 7.84 kg), a height of 1.69 (± 0.06 m), and a body mass index of 24.8 (± 2.14) kg/m2). The participants performed an exercise protocol that comprises five exercises on a standardized load. Each exercise was performed in a duration of 60 seconds with uncontrolled lifting velocity. Cardio-respiratory responses were measured using a portable metabolic system analyzer during the exercises. A wrist digital blood pressure monitor was used to determine pre- and postprotocol blood pressure responses. Based on the results, pre- and postprotocol systolic (p=0.744) and diastolic (p=0.758) blood pressure indicated no significant responses. However, significant differences were observed in pre- and post-heart rate responses (p=0.000). Peak cardio-respiratory responses recorded during the protocol were 30.2 (± 4.02) ml/Kg/min for oxygen consumption, 138 (± 61.9) bpm for heart rate, and 633 (± 71.2) kcal for energy expenditure (estimated per hour). On average, the Metabolic Equivalent of Task (MET) was recorded at a value of 8.62 (± 1.19). For a short duration standardized load circuit training exercise protocol, cardio respiratory responses were similar to other protocols. The metabolic cost of the predefined exercises was nearly half of the recommended energy expenditure through exercise per week. The prescribed protocol was comparable with other exercise protocols for cardiorespiratory variables. The single set protocol used was efficient in terms of caloric expenditure, and was less strenuous over similar exercise duration. Furthermore, the prescribed protocol is applicable and beneficial for active and healthy individuals.
    Matched MeSH terms: Oxygen Consumption
  12. Zaini Hamzah, Wan Noorhayani Wan Rosdi, Abdul Khalik Wood
    MyJurnal
    Well water is a renewable natural resources and one of the drinking water sources. The well water may constituted of dissolved essential chemicals such as K+, Ca''+ and Na+ ; and natural radionuclides such as radioisotopes from uranium-thorium decay series. The geology and mineral composition of the soil will determined the kinds and levels of chemical contents in the groundwater resources. The water flows through the geological formation and dissolved the chemicals before reaching the aquifers. To evaluate how much chemicals and natural radioactive in the water resources, a study has been carried out. Well water samples in this study were taken from 3 districts in Kelantan, which is Bachok, Machang and Kuala Krai. Similarly, in situ water quality parameters were measured using YSI portable water quality parameter include pH, salinity, dissolve oxygen(DO), conductivity, turbidity and total dissolved solids(TDS). The concentrations of K', Ca" and Na' were determined using Energy Dispersive X-ray Fluorescence (EDXRF). Five ml of filtered sample was pipette into the sample cup and, irradiated and measured for 100 seconds counting times. The type of filter used for measuring If+ and Cat{ was Al-thin and default for Nat The ranged of concentration of Kt Ce and Na+ is 23.04-251.89, 3.12-.45.41, and 3.71-125.75 ppm, respectively.
    Matched MeSH terms: Oxygen
  13. Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM, Idris Z
    Brain Tumor Res Treat, 2018 Apr;6(1):31-38.
    PMID: 29717568 DOI: 10.14791/btrt.2018.6.e5
    BACKGROUND: Mitochondria are major cellular sources of reactive oxygen species (ROS) generation which can induce mitochondrial DNA damage and lead to carcinogenesis. The mitochondrial 10398A>G alteration in NADH-dehydrogenase subunit 3 (ND3) can severely impair complex I, a key component of ROS production in the mitochondrial electron transport chain. Alteration in ND3 10398A>G has been reported to be linked with diverse neurodegenerative disorders and cancers. The aim of this study was to find out the association of mitochondrial ND3 10398A>G alteration in brain tumor of Malaysian patients.

    METHODS: Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing.

    RESULTS: Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01).

    CONCLUSION: For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.

    Matched MeSH terms: Reactive Oxygen Species
  14. Ng YW, Say YH
    PeerJ, 2018;6:e4696.
    PMID: 29713567 DOI: 10.7717/peerj.4696
    Background: Obesity-related central nervous system (CNS) pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD) related elevation of saturated fatty acids like palmitic acid (PA) in neurons and astrocytes of the brain.

    Methods: Human neuroblastoma cells SH-SY5Y (as a neuronal model) and human glioblastoma cells T98G (as an astrocytic model), were treated with 100-500 µM PA, oleic acid (OA) or lauric acid (LA) for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of stable overexpression of γ-synuclein (γ-syn), a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson's disease (PD) α-synuclein [α-syn; wild-type (wt) and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ), a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS) level was determined using 2',7'-dichlorofluorescien diacetate (DCFH-DA) assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS) assay.

    Results: MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T) modestly (but still significantly) rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA's neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity-suggesting a mechanism of PA-induced leptin resistance. Annexin V/PI flow cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG0-G1 fraction, accompanied by a decrease in G2-M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y.

    Discussion: In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.

    Matched MeSH terms: Reactive Oxygen Species
  15. Crum EM, Che Muhamed AM, Barnes M, Stannard SR
    PMID: 28572749 DOI: 10.1186/s12970-017-0172-0
    BACKGROUND: Recent research has indicated that pomegranate extract (POMx) may improve performance during aerobic exercise by enhancing the matching of vascular oxygen (O2) provision to muscular requirements. POMx is rich in ellagitannin polyphenols and nitrates (NO3-), which are both associated with improvements in blood flow and O2 delivery. Primarily, this study aimed to determine whether POMx improves performance in a cycling time trial to exhaustion at 100%VO2max (TTE100%) in highly-trained cyclists. In addition, we investigated if the O2 cost (VO2) of submaximal exercise was lower with POMx, and whether any changes were greater at high altitude where O2 delivery is impaired.

    METHODS: Eight cyclists exercised at three submaximal intensities before completing a TTE100% at sea-level (SEA) and at 1657 m of altitude (ALT), with pre-exercise consumption of 1000 mg of POMx or a placebo (PLAC) in a randomized, double-blind, crossover design. Data were analysed using a three way (treatment x altitude x intensity) or two-way (treatment x altitude) repeated measures ANOVA with a Fisher's LSD post-hoc analysis. Significance was set at p ≤ 0.05. The effect size of significant interactions was calculated using Cohen's d.

    RESULTS: TTE100% performance was reduced in ALT but was not influenced by POMx (p > 0.05). Plasma NO3- were 10.3 μmol greater with POMx vs. PLAC (95% CI, 0.8, 19.7,F1,7 = 7.83, p  0.05). Submaximal VO2 values were not affected by POMx (p ≥ 0.05).

    CONCLUSIONS: The restoration of SEA VO2 values at ALT is likely driven by the high polyphenol content of POMx, which is proposed to improve nitric oxide bioavailability. Despite an increase in VO2, no change in exercise performance occurred and therefore this study does not support the use of POMx as an ergogenic supplement.

    Matched MeSH terms: Oxygen Consumption
  16. Chan CK, Tan LT, Andy SN, Kamarudin MNA, Goh BH, Kadir HA
    Front Pharmacol, 2017;8:397.
    PMID: 28680404 DOI: 10.3389/fphar.2017.00397
    Elephantopus scaber L. (family: Asteraceae) has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF) on the release of pro-inflammatory mediators in lipopolysaccharide (LPS)-induced microglia cells (BV-2). Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.
    Matched MeSH terms: Reactive Oxygen Species
  17. El Habbash AI, Mohd Hashim N, Ibrahim MY, Yahayu M, Omer FAE, Abd Rahman M, et al.
    PeerJ, 2017;5:e3460.
    PMID: 28740747 DOI: 10.7717/peerj.3460
    Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing.
    Matched MeSH terms: Reactive Oxygen Species
  18. Tan LT, Chan KG, Khan TM, Bukhari SI, Saokaew S, Duangjai A, et al.
    Front Pharmacol, 2017;8:276.
    PMID: 28567016 DOI: 10.3389/fphar.2017.00276
    Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography-mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.
    Matched MeSH terms: Reactive Oxygen Species
  19. Yuhaniza Shafinie Kamsani, Mohd Hamim Rajikin
    MyJurnal
    This review summarizes the impact of tocotrienols (TCTs) as antioxidants in minimizing oxidative stress (OS), particularly in embryos exposed to OS causing agents. OS level is increased, for example, by nicotine, a major alkaloid content in cigarette, which is also a source of exogenous reactive oxygen species (ROS). Increased nicotine-induced OS increases cell stress response, which is a common trigger leading to embryonic cell death. Having more profound anti-oxidative stress effects than its counterpart tocopherol, TCTs improve blastocyst implantation, foetal growth, pregnancy outcome and survival of the neonates affected by nicotine. In reversing cell developmental arrest caused by nicotine-induced OS, TCTs enhances PDK-1 expression in the P13K/Akt pathway and permit embryonic development beyond the 4-cell stage with the production of more morulae. At the cytoskeletal level, TCTs increase the number of nicotine-induced apoptotic cells, through caspase 8 activation in the mitochondria. TCTs facilitate rough endoplasmic reticulum (rER) stress-mediated apoptosis and autophagy, resulting from nicotine-induced OS. Reduced vesicular population in TCT supplemented oocytes on the other hand may suggest reduced secretion of apoptotic cell bodies thus probably minimizing vesicular apoptosis during oocyte maturation. Further extensive research is required to develop TCTs as a tool in specific therapeutic approaches to overcome the detrimental effects of OS.
    Matched MeSH terms: Reactive Oxygen Species
  20. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R
    SAGE Open Med, 2018;6:2050312118781962.
    PMID: 30034805 DOI: 10.1177/2050312118781962
    Objectives: To synthesize novel compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin classes and test their potential anticancer properties.

    Methods: Several compounds were synthesized and their molecular identity was confirmed using nuclear magnetic resonance. Potential anticancer properties were determined using cytopathogenicity assays and growth inhibition assays using cervical cancer cells (HeLa). Cells were incubated with different concentrations of compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins and effects were determined. HeLa cells cytopathogenicity was determined by measuring lactate dehydrogenase release using cytotoxicity detection assay. Growth inhibition assays were performed by incubating 50% semi-confluent HeLa cells with Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin compounds and HeLa cell proliferation was observed. Growth inhibition and host cell death were compared in the presence and absence of drugs.

    Results: Cytopathogenicity assays showed that the selected compounds were cytotoxic against HeLa cells, killing up to 90% of cells. Growth inhibition assays exhibited 100% growth inhibition. These effects are likely via oxidative stress, production of reactive oxygen species, changes in cytosolic and intracellular calcium/adenine nucleotide homeostasis, inhibition of ribonucleotide reductase/cyclooxygenase and/or glutathione depletion.

    Conclusions: Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins exhibited potent anticancer properties. These findings are promising and should pave the way in the rationale development of anticancer drugs. Using different cancer cell lines, future studies will determine their potential as anti-tumour agents as well as their precise molecular mode of action.

    Matched MeSH terms: Reactive Oxygen Species
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links