Displaying publications 81 - 100 of 1459 in total

Abstract:
Sort:
  1. Chong SY, Tiňo P, He J, Yao X
    Evol Comput, 2019;27(2):195-228.
    PMID: 29155606 DOI: 10.1162/evco_a_00218
    Studying coevolutionary systems in the context of simplified models (i.e., games with pairwise interactions between coevolving solutions modeled as self plays) remains an open challenge since the rich underlying structures associated with pairwise-comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problems that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modeled as a specific type of Markov chains-random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provides the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled manner.
    Matched MeSH terms: Algorithms*
  2. Toosi S, Misron N, Hanamoto T, Bin Aris I, Radzi MA, Yamada H
    ScientificWorldJournal, 2014;2014:645734.
    PMID: 25298969 DOI: 10.1155/2014/645734
    This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation.
    Matched MeSH terms: Algorithms*
  3. Yoon TL, Yeap ZQ, Tan CS, Chen Y, Chen J, Yam MF
    PMID: 34627017 DOI: 10.1016/j.saa.2021.120440
    A proof-of-concept medicinal herbs identification scheme using machine learning classifiers is proposed in the form of an automated computational package. The scheme makes use of two-dimensional correlation Fourier Transformed Infrared (FTIR) fingerprinting maps derived from the FTIR of raw herb spectra as digital input. The prototype package admits a collection of 11 machine learning classifiers to form a voting pool. A common set of oversampled dataset containing 5 different herbal classes is used to train the pool of classifiers on a one-verses-others manner. The collections of trained models, dubbed the voting classifiers, are deployed in a collective manner to cast their votes to support or against a given inference fingerprint whether it belongs to a particular class. By collecting the votes casted by all voting classifiers, a logically designed scoring system will select out the most probable guess of the identity of the inference fingerprint. The same scoring system is also capable of discriminating an inference fingerprint that does not belong to any of the classes the voting classifiers are trained for as the 'others' type. The proposed classification scheme is stress-tested to evaluate its performance and expected consistency. Our experimental runs show that, by and large, a satisfactory performance of the classification scheme of up to 90 % accuracy is achieved, providing a proof-of-concept viability that the proposed scheme is a feasible, practical, and convenient tool for herbal classification. The scheme is implemented in the form of a packaged Python code, dubbed the "Collective Voting" (CV) package, which is easily scalable, maintained and used in practice.
    Matched MeSH terms: Algorithms
  4. Vinothini R, Niranjana G, Yakub F
    J Digit Imaging, 2023 Dec;36(6):2480-2493.
    PMID: 37491543 DOI: 10.1007/s10278-023-00852-7
    The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as the complexities involved in classifying infection regions. Currently, various deep learning (DL)-based methods are being introduced for the automatic detection of COVID-19 using computerized tomography (CT) scan images. In this paper, we propose the pelican optimization algorithm-based long short-term memory (POA-LSTM) method for classifying coronavirus using CT scan images. The data preprocessing technique is used to convert raw image data into a suitable format for subsequent steps. Here, we develop a general framework called no new U-Net (nnU-Net) for region of interest (ROI) segmentation in medical images. We apply a set of heuristic guidelines derived from the domain to systematically optimize the ROI segmentation task, which represents the dataset's key properties. Furthermore, high-resolution net (HRNet) is a standard neural network design developed for feature extraction. HRNet chooses the top-down strategy over the bottom-up method after considering the two options. It first detects the subject, generates a bounding box around the object and then estimates the relevant feature. The POA is used to minimize the subjective influence of manually selected parameters and enhance the LSTM's parameters. Thus, the POA-LSTM is used for the classification process, achieving higher performance for each performance metric such as accuracy, sensitivity, F1-score, precision, and specificity of 99%, 98.67%, 98.88%, 98.72%, and 98.43%, respectively.
    Matched MeSH terms: Algorithms
  5. Majeed A, Mt Piah AR, Gobithaasan RU, Yahya ZR
    PLoS One, 2015;10(4):e0122854.
    PMID: 25880632 DOI: 10.1371/journal.pone.0122854
    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application.
    Matched MeSH terms: Algorithms
  6. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
    Matched MeSH terms: Algorithms
  7. Maktabdar Oghaz M, Maarof MA, Zainal A, Rohani MF, Yaghoubyan SH
    PLoS One, 2015;10(8):e0134828.
    PMID: 26267377 DOI: 10.1371/journal.pone.0134828
    Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.
    Matched MeSH terms: Algorithms
  8. Chen X, Zheng L, Xu Y
    J Environ Public Health, 2022;2022:2700957.
    PMID: 35978586 DOI: 10.1155/2022/2700957
    Under the restriction of ecological and environmental factors, our requirements have improved for the development path of gymnasium construction. According to the previous way to carry out the development path of gymnasium construction will make our construction work encounter a lot of unnecessary troubles, so we can improve the success rate of the development path of gymnasium construction under the constraints of the ecological environment by carrying out relevant evasive operations according to the constraints of ecological environment. The topological path and path algorithm used to improve the efficiency of stadium construction and development path under the constraints of ecological environment, TEG algorithm, Q-TEG model, Q-TEG algorithm, Dtra algorithm, TraD algorithm, ResR algorithm, and Q-TED algorithm used in resource reservation plus time slot plus hosting bring the following advantages: (1) we use topological path and path algorithm to explore topological representation methods suitable for development path. The overview provides a theoretical basis for guidance, for forwarding technology scheduling mechanisms and multi-path forwarding mechanisms to provide higher flexibility. (2) We use the TEG algorithm of resource reservation plus time slot plus trusteeship, Q-TEG model, and Q-TEG algorithm under multi-model model can deal with the capacity and link of queue in each stadium construction development path well. It is more convenient to set the packet loss threshold for the propagation experiment tested in the simulation. Better help gymnasium construction and development path transmission is successful. (3) The use of the Dtra algorithm, TraD algorithm, ResR algorithm, and Q-TED algorithm in our stadium construction development path of a good deal of the transmission link structure between each node, so that the transmission efficiency between nodes becomes higher, making our stadium construction development path operation more efficient and convenient.
    Matched MeSH terms: Algorithms
  9. Lou H, Lu Y, Lu D, Fu R, Wang X, Feng Q, et al.
    Am J Hum Genet, 2015 Jul 02;97(1):54-66.
    PMID: 26073780 DOI: 10.1016/j.ajhg.2015.05.005
    Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10(-15)). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276-46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r(2) = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075-14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1.
    Matched MeSH terms: Algorithms
  10. Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, et al.
    Sci Rep, 2015 Dec 14;5:17928.
    PMID: 26655688 DOI: 10.1038/srep17928
    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
    Matched MeSH terms: Algorithms
  11. Xiao H
    Neural Netw, 2020 Nov;131:172-184.
    PMID: 32801109 DOI: 10.1016/j.neunet.2020.07.024
    Paraphrase identification serves as an important topic in natural language processing while sequence alignment and matching underlie the principle of this task. Traditional alignment methods take advantage of attention mechanism. Attention mechanism, i.e. weighting technique, could pick out the most similar/dissimilar parts, but is weak in modeling the aligned unmatched parts, which are the crucial evidence to identify paraphrases. In this paper, we empower neural architecture with Hungarian algorithm to extract the aligned unmatched parts. Specifically, first, our model applies BiLSTM/BERT to encode the input sentences into hidden representations. Then, Hungarian layer leverages the hidden representations to extract the aligned unmatched parts. Last, we apply cosine similarity to metric the aligned unmatched parts for a final discrimination. Extensive experiments show that our model outperforms other baselines, substantially and significantly.
    Matched MeSH terms: Algorithms
  12. Ling L, Huang L, Wang J, Zhang L, Wu Y, Jiang Y, et al.
    Interdiscip Sci, 2023 Dec;15(4):560-577.
    PMID: 37160860 DOI: 10.1007/s12539-023-00570-2
    Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.
    Matched MeSH terms: Algorithms*
  13. Peng P, Wu D, Huang LJ, Wang J, Zhang L, Wu Y, et al.
    Interdiscip Sci, 2024 Mar;16(1):39-57.
    PMID: 37486420 DOI: 10.1007/s12539-023-00580-0
    Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.
    Matched MeSH terms: Algorithms
  14. Ding R, Ujang N, Hamid HB, Wu J
    PLoS One, 2015;10(10):e0139961.
    PMID: 26448645 DOI: 10.1371/journal.pone.0139961
    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.
    Matched MeSH terms: Algorithms
  15. Wang Z, Lechner AM, Yang Y, Baumgartl T, Wu J
    Sci Total Environ, 2020 May 15;717:137214.
    PMID: 32062237 DOI: 10.1016/j.scitotenv.2020.137214
    Open-cut coal mining can seriously disturb and reshape natural landscapes which results in a range of impacts on local ecosystems and the services they provide. To address the negative impacts of disturbance, progressive rehabilitation is commonly advocated. However, there is little research focusing on how these impacts affect ecosystem services within mine sites and changes over time. The aim of this study was to assess the cumulative impacts of mining disturbance and rehabilitation on ecosystem services through mapping and quantifying changes at multiple spatial and temporal scales. Four ecosystem services including carbon sequestration, air quality regulation, soil conservation and water yield were assessed in 1989, 1997, 2005 and 2013. Disturbance and rehabilitation was mapped using LandTrendr algorithm with Landsat. We mapped spatial patterns and pixel values for each ecosystem service with corresponding model and the landscape changes were analyzed with landscape metrics. In addition, we assessed synergies and trade-offs using Spearman's correlation coefficient for different landscape classes and scales. The results showed that carbon sequestration, air quality regulation and water yield services were both positively and negatively affected by vegetation cover changes due to mined land disturbance and rehabilitation, while soil conservation service were mainly influenced by topographic changes. There were strong interactions between carbon sequestration, air quality regulation and water yield, which were steady among different spatial scales and landscape types. Soil conservation correlations were weak and changed substantially due to differences of spatial scales and landscape types. Although there are limitations associated with data accessibility, this study provides a new research method for mapping impacts of mining on ecosystem services, which offer spatially explicit information for decision-makers and environmental regulators to carry out feasible policies, balancing mining development with ecosystem services provision.
    Matched MeSH terms: Algorithms
  16. Wang S, Liu Q, Liu Y, Jia H, Abualigah L, Zheng R, et al.
    Comput Intell Neurosci, 2021;2021:6379469.
    PMID: 34531910 DOI: 10.1155/2021/6379469
    Based on Salp Swarm Algorithm (SSA) and Slime Mould Algorithm (SMA), a novel hybrid optimization algorithm, named Hybrid Slime Mould Salp Swarm Algorithm (HSMSSA), is proposed to solve constrained engineering problems. SSA can obtain good results in solving some optimization problems. However, it is easy to suffer from local minima and lower density of population. SMA specializes in global exploration and good robustness, but its convergence rate is too slow to find satisfactory solutions efficiently. Thus, in this paper, considering the characteristics and advantages of both the above optimization algorithms, SMA is integrated into the leader position updating equations of SSA, which can share helpful information so that the proposed algorithm can utilize these two algorithms' advantages to enhance global optimization performance. Furthermore, Levy flight is utilized to enhance the exploration ability. It is worth noting that a novel strategy called mutation opposition-based learning is proposed to enhance the performance of the hybrid optimization algorithm on premature convergence avoidance, balance between exploration and exploitation phases, and finding satisfactory global optimum. To evaluate the efficiency of the proposed algorithm, HSMSSA is applied to 23 different benchmark functions of the unimodal and multimodal types. Additionally, five classical constrained engineering problems are utilized to evaluate the proposed technique's practicable abilities. The simulation results show that the HSMSSA method is more competitive and presents more engineering effectiveness for real-world constrained problems than SMA, SSA, and other comparative algorithms. In the end, we also provide some potential areas for future studies such as feature selection and multilevel threshold image segmentation.
    Matched MeSH terms: Algorithms*
  17. Lin CJ, Lin HY, Yu CY, Wu CF
    Sains Malaysiana, 2015;44:1721-1728.
    In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE)
    learning method was proposed for solving the control and the prediction problems. The traditional differential evolution
    (DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential
    evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer,
    the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of
    the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the
    water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness
    of the proposed method.
    Matched MeSH terms: Algorithms
  18. Saffian SM, Duffull SB, Wright D
    Clin. Pharmacol. Ther., 2017 Aug;102(2):297-304.
    PMID: 28160278 DOI: 10.1002/cpt.649
    There is preliminary evidence to suggest that some published warfarin dosing algorithms produce biased maintenance dose predictions in patients who require higher than average doses. We conducted a meta-analysis of warfarin dosing algorithms to determine if there exists a systematic under- or overprediction of dose requirements for patients requiring ≥7 mg/day across published algorithms. Medline and Embase databases were searched up to September 2015. We quantified the proportion of over- and underpredicted doses in patients whose observed maintenance dose was ≥7 mg/day. The meta-analysis included 47 evaluations of 22 different warfarin dosing algorithms from 16 studies. The meta-analysis included data from 1,492 patients who required warfarin doses of ≥7 mg/day. All 22 algorithms were found to underpredict warfarin dosing requirements in patients who required ≥7 mg/day by an average of 2.3 mg/day with a pooled estimate of underpredicted doses of 92.3% (95% confidence interval 90.3-94.1, I(2) = 24%).
    Matched MeSH terms: Algorithms*
  19. Azadnia AH, Taheri S, Ghadimi P, Saman MZ, Wong KY
    ScientificWorldJournal, 2013;2013:246578.
    PMID: 23864823 DOI: 10.1155/2013/246578
    One of the cost-intensive issues in managing warehouses is the order picking problem which deals with the retrieval of items from their storage locations in order to meet customer requests. Many solution approaches have been proposed in order to minimize traveling distance in the process of order picking. However, in practice, customer orders have to be completed by certain due dates in order to avoid tardiness which is neglected in most of the related scientific papers. Consequently, we proposed a novel solution approach in order to minimize tardiness which consists of four phases. First of all, weighted association rule mining has been used to calculate associations between orders with respect to their due date. Next, a batching model based on binary integer programming has been formulated to maximize the associations between orders within each batch. Subsequently, the order picking phase will come up which used a Genetic Algorithm integrated with the Traveling Salesman Problem in order to identify the most suitable travel path. Finally, the Genetic Algorithm has been applied for sequencing the constructed batches in order to minimize tardiness. Illustrative examples and comparisons are presented to demonstrate the proficiency and solution quality of the proposed approach.
    Matched MeSH terms: Algorithms*
  20. Bhatia S, Abdullah AZ, Wong CT
    J Hazard Mater, 2009 Apr 15;163(1):73-81.
    PMID: 18649998 DOI: 10.1016/j.jhazmat.2008.06.055
    Adsorption behaviours of butyl acetate in air have been studied over silver-loaded Y (Si/Al=40) and ZSM-5 (Si/Al=140) zeolites. The silver metal was loaded into the zeolites by ion exchange (IE) and impregnation (IM) methods. The adsorption study was mainly conducted at a gas hourly space velocity (GHSV) of 13,000 h(-1) with the organic concentration of 1000 ppm while the desorption step was carried out at a GHSV of 5000 h(-1). The impregnated silver-loaded adsorbents showed lower uptake capacity and shorter breakthrough time by about 10 min, attributed to changes in the pore characteristics and available surface for adsorption. Silver exchanged Y (AgY(IE)) with lower hydrophobicity showed higher uptake capacity of up to 35%, longer adsorbent service time and easier desorption compared to AgZSM-5(IE). The presence of water vapour in the feed suppressed the butyl acetate adsorption of AgY(IE) by 42% due to the competitive adsorption of water on the surface and the effect was more pronounced at lower GHSV. Conversely, the adsorption capacity of AgZSM-5(IE) was minimally affected, attributed to the higher hydrophobicity of the material. A mathematical model is proposed to simulate the adsorption behaviour of butyl acetate over AgY(IE) and AgZSM-5(IE). The model parameters were successfully evaluated and used to accurately predict the breakthrough curves under various process conditions with root square mean errors of between 0.05 and 0.07.
    Matched MeSH terms: Algorithms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links