OBJECTIVE: In the present study, bioassay-guided screening technique was employed to identify the best AP extract in the management of MetS, PCa, and MetS-PCa co-disease in vitro.
METHODS: Five AP extracts by different solvent systems; APE1 (aqueous), APE2 (absolute methanol), APE3 (absolute ethanol), APE4 (40% methanol), and APE5 (60% ethanol) were screened through their phytochemical profile, in-vitro anti-cancer, anti-obese, and anti-hyperglycemic properties. The best extract was further tested for its potential in MetS-induced PCa progression.
RESULTS: APE2 contained the highest andrographolide (1.34 ± 0.05 mg/mL) and total phenolic content (8.85 ± 0.63 GAE/gDW). However, APE3 has the highest flavonoid content (11.52 ± 0.80 RE/gDW). APE2 was also a good scavenger of DPPH radicals (EC50 = 397.0 µg/mL). In cell-based assays, among all extracts, APE2 exhibited the highest antiproliferative activity (IC50 = 57.5 ± 11.8 µg/mL) on DU145 cancer cell line as well as on its migration activity. In in-vitro anti-obese study, all extracts significantly reduced lipid formation in 3T3-L1 cells. The highest insulin-sensitizing and -mimicking actions were exerted by both APE2 and APE3. Taken together, APE2 showed collectively good activity in the inhibition of PCa progression and MetS manifestation in vitro, compared to other extracts. Therefore, APE2 was further investigated for its potential to intervene DU145 progression induced with leptin (10-100 ng/mL) and adipocyte conditioned media (CM) (10% v/v). Interestingly, APE2 significantly diminished the progression of the cancer cell that has been pre-treated with leptin and CM through cell cycle arrest at S phase and induction of cell death.
CONCLUSION: In conclusion, AP extracts rich with andrographolide has the potential to be used as an alternative to ameliorate PCa progression induced by factors highly expressed in MetS.
METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively.
RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were
OBJECTIVES: The aim of this study is to develop a colorimetric sensor to detect Hg2+ in water sources using HRP inhibitive assay. The system can be incorporated with a mobile app to make it practical for a prompt in-situ analysis.
METHODS: HRP enzyme was pre-incubated with different concentration of Hg2+ at 37°C for 1 hour prior to the addition of chromogen. The mix of PBS buffer, 4-AAP and phenol which act as a chromogen was then added to the HRP enzyme and was incubated for 20 minutes. Alcohol was added to stop the enzymatic reaction, and the change of colour were observed and analyse using UV-Vis spectrophotometer at 520 nm wavelength. The results were then analysed using GraphPad PRISM 4 for a non-linear regression analysis, and using Mathematica (Wolfram) 10.0 software for a hierarchical cluster analysis. The samples from spectroscopy measurement were directly used for dynamic light scattering (DLS) evaluation to evaluate the changes in HRP size due to Hg2+ malfunctionation. Finally, molecular dynamic simulations comparing normal and malfunctioned HRP were carried out to investigate structural changes of the HRP using YASARA software.
RESULTS: Naked eye detection and data from UV-Vis spectroscopy showed good selectivity of Hg2+ over other metal ions as a distinctive color of Hg2+ is observed at 0.5 ppm with the IC50 of 0.290 ppm. The mechanism of Hg2+ inhibition towards HRP was further validated using a dynamic light scattering (DLS) and molecular dynamics (MD) simulation to ensure that there is a conformational change in HRP size due to the presence of Hg2+ ions. The naked eye detection can be quantitatively determined using a smartphone app namely ColorAssist, suggesting that the detection signal does not require expensive instruments to be quantified.
CONCLUSION: A naked-eye colorimetric sensor for mercury ions detection was developed. The colour change due to the presence of Hg2+ can be easily distinguished using an app via a smartphone. Thus, without resorting to any expensive instruments that are mostly laboratory bound, Hg2+ can be easily detected at IC50 value of 0.29 ppm. This is a promising alternative and practical method to detect Hg2+ in the environment.