Displaying publications 81 - 100 of 171 in total

Abstract:
Sort:
  1. Nor Faekah I, Fatihah S, Mohamed ZS
    Heliyon, 2020 Mar;6(3):e03594.
    PMID: 32258460 DOI: 10.1016/j.heliyon.2020.e03594
    A bench-scale model of a partially packed upflow anaerobic fixed film (UAF) reactor was set up and operated at five different hydraulic retention times (HRTs) of (17, 14, 10, 8, and 5) days. The reactor was fed with synthetic rubber wastewater consisting of a chemical oxygen demand (COD) concentration of 6355-6735 mg/L. The results were analyzed using the Monod model, the Modified Stover-Kincannon models, and the Grau Second-Order Model. The Grau Second-Order model was found to best fit the experimental data. The biokinetic constant values, namely the growth yield coefficient (Y) and the endogenous coefficient (Kd) were 0.027 g VSS/g COD and 0.1705 d-1, respectively. The half-saturation constant (Ks) and maximum substrate utilization rate (K) returned values of 84.1 mg/L and 0.371 d-1, respectively, whereas the maximum specific growth rate of the microorganism (μmax) was 0.011 d-1. The constants, Umax and KB, of the Stover-Kincannon model produced values of 6.57 g/L/d and 6.31 g/L/d, respectively. Meanwhile, the average second-order substrate removal rate, ks(2), was 105 d-1. These models gave high correlation coefficients with the value of R2 = 80-99% and these indicated that these models can be used in designing UAF reactor consequently predicting the behaviour of the reactor.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  2. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ
    J Hazard Mater, 2011 May 15;189(1-2):404-13.
    PMID: 21420786 DOI: 10.1016/j.jhazmat.2011.02.052
    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  3. Akinbile CO, Yusoff MS, Ahmad Zuki AZ
    Waste Manag, 2012 Jul;32(7):1387-93.
    PMID: 22456086 DOI: 10.1016/j.wasman.2012.03.002
    Performance evaluation of pilot scale sub-surface constructed wetlands was carried out in treating leachate from Pulau Burung Sanitary Landfill (PBSL). The constructed wetland was planted with Cyperus haspan with sand and gravel used as substrate media. The experiment was operated for three weeks retention time and during the experimentation, the influent and effluent samples were tested for its pH, turbidity, color, total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), ammonia nitrogen (NH(3)-N), Total phosphorus (TP), total nitrogen (TN) and also for heavy metals such as iron (Fe), magnesium (Mg), manganese (Mn) and zinc (Zn) concentrations. The results showed that the constructed wetlands with C. haspan were capable of removing 7.2-12.4% of pH, 39.3-86.6% of turbidity, 63.5-86.6% of color, 59.7-98.8% of TSS, 39.2-91.8% of COD, 60.8-78.7% of BOD(5), 29.8-53.8% of NH(3)-N, 59.8-99.7% of TP, 33.8-67.0% of TN, 34.9-59.0% of Fe, 29.0-75.0% of Mg, 51.2-70.5% of Mn, and 75.9-89.4% of Zn. The significance of removal was manifested in the quality of the effluent obtained at the end of the study. High removal efficiencies in the study proved that leachate could be treated effectively using subsurface constructed wetlands with C. haspan plant.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  4. Chua SC, Show PL, Chong FK, Ho YC
    Water Sci Technol, 2020 Nov;82(9):1833-1847.
    PMID: 33201847 DOI: 10.2166/wst.2020.409
    Increasing agricultural irrigation to counteract a soil moisture deficit has resulted in the production of hazardous agricultural wastewater with high turbidity and chemical oxygen demand (COD). An innovative, sustainable, and effective solution is needed to overcome the pollution and water scarcity issues caused by the agricultural anthropogenic processes. This research focused on a sustainable solution that utilized a waste (broken lentil) as natural coagulant for turbidity and COD removal in agricultural wastewater treatment. The efficiency of the lentil extract (LE), grafted lentil extract (LE-g-DMC) and aluminium sulphate (alum) coagulants was optimized through the response surface methodology. Three-level Box-Behnken design was used to statistically visualize the complex interactions of pH, concentration of coagulants and settling time. LE achieved a significant 99.55% and 79.87% removal of turbidity and COD at pH 4, 88.46 mg/L of LE and 6.9 minutes of settling time, whereas LE-g-DMC achieved 99.83% and 80.32% removal of turbidity and COD at pH 6.7, 63.08 mg/L of LE-g-DMC and 5 minutes of settling time. As compared to alum, LE-g-DMC required approximately 30% less concentration. Moreover, LE and LE-g-DMC also required 75% and 65% less settling time as compared to the alum. Both LE and LE-g-DMC produced flocs with excellent settling ability (5.77 mg/L and 4.48 mL/g) and produced a significant less volume of sludge (10.60 mL/L and 8.23 mL/L) as compared with the alum. The economic analysis and assessments have proven the feasibility of both lentil-based coagulants in agricultural wastewater treatment.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  5. Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H, Chelliapan S
    Bioresour Technol, 2013 Apr;133:630-4.
    PMID: 23453799 DOI: 10.1016/j.biortech.2013.01.149
    The present study demonstrated that aerobic granular sludge is capable of treating livestock wastewater from a cattle farm in a sequencing batch reactor (SBR) without the presence of support material. A lab scale SBR was operated for 80 d using 4 h cycle time with an organic loading rate (OLR) of 9 kg COD m(-3) d(-1). Results showed that the aerobic granules were growing from 0.1 to 4.1 mm towards the end of the experimental period. The sludge volume index (SVI) was 42 ml g(-1) while the biomass concentration in the reactor grew up to 10.3 g L(-1) represent excellent biomass separation and good settling ability of the granules. During this period, maximum COD, TN and TP removal efficiencies (74%, 73% and 70%, respectively) were observed in the SBR system, confirming high microbial activity in the SBR system.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  6. Fulazzaky MA
    Environ Monit Assess, 2013 Jun;185(6):4721-34.
    PMID: 23001555 DOI: 10.1007/s10661-012-2899-z
    Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.
    Matched MeSH terms: Biological Oxygen Demand Analysis/methods*
  7. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Biological Oxygen Demand Analysis*
  8. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    J Hazard Mater, 2017 Mar 05;325:170-177.
    PMID: 27931001 DOI: 10.1016/j.jhazmat.2016.11.074
    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m2, corresponding to current density of 120.24mA/m2. The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  9. Zain S, Roslani N, Hashim R, Anuar N, Suja F, Basri N, et al.
    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank & return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD & total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a NafionTM membrane using a mixed culture of wastewater as a biocatalyst. The maximum power density generated using activated sludge was 9.053 mW/cm2, with 26.8% COD removal and 40% TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  10. Darajeh N, Idris A, Fard Masoumi HR, Nourani A, Truong P, Sairi NA
    J Environ Manage, 2016 Oct 01;181:343-352.
    PMID: 27393941 DOI: 10.1016/j.jenvman.2016.06.060
    While the oil palm industry has been recognized for its contribution towards economic growth and rapid development, it has also contributed to environmental pollution due to the production of huge quantities of by-products from the oil extraction process. A phytoremediation technique (floating Vetiver system) was used to treat Palm Oil Mill Secondary Effluent (POMSE). A batch study using 40 L treatment tanks was carried out under different conditions and Response Surface Methodology (RSM) was applied to optimize the treatment process. A three factor central composite design (CCD) was used to predict the experimental variables (POMSE concentration, Vetiver plant density and time). An extraordinary decrease in organic matter as measured by BOD and COD (96% and 94% respectively) was recorded during the experimental duration of 4 weeks using a density of 30 Vetiver plants. The best and lowest final BOD of 2 mg/L was obtained when using 15 Vetiver plants after 13 days for low concentration POMSE (initial BOD = 50 mg/L). The next best result of BOD at 32 mg/L was obtained when using 30 Vetiver plants after 24 days for medium concentration POMSE (initial BOD = 175 mg/L). These results confirmed the validity of the model, and the experimental value was determined to be quite close to the predicted value, implying that the empirical model derived from RSM experimental design can be used to adequately describe the relationship between the independent variables and response. The study showed that the Vetiver system is an effective method of treating POMSE.
    Matched MeSH terms: Biological Oxygen Demand Analysis*
  11. Obaid HA, Shahid S, Basim KN, Chelliapan S
    Water Sci Technol, 2015;72(6):1029-42.
    PMID: 26360765 DOI: 10.2166/wst.2015.297
    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  12. Ajorlo M, Abdullah RB, Yusoff MK, Halim RA, Hanif AH, Willms WD, et al.
    Environ Monit Assess, 2013 Oct;185(10):8649-58.
    PMID: 23604787 DOI: 10.1007/s10661-013-3201-8
    This study investigates the applicability of multivariate statistical techniques including cluster analysis (CA), discriminant analysis (DA), and factor analysis (FA) for the assessment of seasonal variations in the surface water quality of tropical pastures. The study was carried out in the TPU catchment, Kuala Lumpur, Malaysia. The dataset consisted of 1-year monitoring of 14 parameters at six sampling sites. The CA yielded two groups of similarity between the sampling sites, i.e., less polluted (LP) and moderately polluted (MP) at temporal scale. Fecal coliform (FC), NO3, DO, and pH were significantly related to the stream grouping in the dry season, whereas NH3, BOD, Escherichia coli, and FC were significantly related to the stream grouping in the rainy season. The best predictors for distinguishing clusters in temporal scale were FC, NH3, and E. coli, respectively. FC, E. coli, and BOD with strong positive loadings were introduced as the first varifactors in the dry season which indicates the biological source of variability. EC with a strong positive loading and DO with a strong negative loading were introduced as the first varifactors in the rainy season, which represents the physiochemical source of variability. Multivariate statistical techniques were effective analytical techniques for classification and processing of large datasets of water quality and the identification of major sources of water pollution in tropical pastures.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  13. Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1612-9.
    PMID: 22134862 DOI: 10.1007/s11356-011-0676-0
    INTRODUCTION: Environmental safe and friendly management and disposal of wastewater sludge is a problem of every treatment plant throughout the world. Bioseparation and dewaterability of raw domestic wastewater sludge were evaluated for proper management and disposal by mycoremediation, i.e., using prior grown 2% (v/v) spore suspension of filamentous fungal (Mucor hiemalis Wehmer) broth inoculation, which were grown in 2% (w/v) solution of malt extract and wheat flour for 48-60 h in orbital shaker.

    DISCUSSION: Within 2-3 days of treatment application, encouraging results were achieved in total dry solids (TDS), total suspended solid (TSS), turbidity, chemical oxygen demand (COD), specific resistance to filtration (SRF), and pH due to fungal treatment in recognition of bioseparation and dewaterability of wastewater sludge compared to control. The significant reduction of TDS was remarked at fungal biomass (FB) in wheat flour (WF) treatment. The removal of TSS, turbidity, COD, and SRF were observed 96.0%, 99.4%, 92.6%, and 97.6%, respectively, in supernatant at 5 days by FB in WF. The SRF measuring the dewaterability was decreased with maximum (0.26 × 10(-12) mg/kg) equivalent to 95.5% at 2 days in FB in WF also. FB in WF broth is a potential, environmental friendly, comparatively low-cost biological technique which might play the significant role for bioremediation and bioseparation of domestic wastewater sludge. The present technique may bring a dynamic change in treatment of wastewater in future.

    Matched MeSH terms: Biological Oxygen Demand Analysis
  14. Abu Amr SS, Aziz HA
    Waste Manag, 2012 Sep;32(9):1693-8.
    PMID: 22633680 DOI: 10.1016/j.wasman.2012.04.009
    Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  15. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN
    Bioresour Technol, 2011 Nov;102(21):9876-83.
    PMID: 21890353 DOI: 10.1016/j.biortech.2011.08.014
    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  16. Hashim SA, Samsudin FN, Wong CS, Abu Bakar K, Yap SL, Mohd Zin MF
    Arch Biochem Biophys, 2016 09 01;605:34-40.
    PMID: 27056469 DOI: 10.1016/j.abb.2016.03.032
    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  17. Amir S. A. Hamzah, Ali H. M. Murid
    MATEMATIKA, 2018;34(2):293-311.
    MyJurnal
    This study presents a mathematical model examining wastewater pollutant removal through
    an oxidation pond treatment system. This model was developed to describe the reaction
    between microbe-based product mPHO (comprising Phototrophic bacteria (PSB)), dissolved
    oxygen (DO) and pollutant namely chemical oxygen demand (COD). It consists
    of coupled advection-diffusion-reaction equations for the microorganism (PSB), DO and
    pollutant (COD) concentrations, respectively. The coupling of these equations occurred
    due to the reactions between PSB, DO and COD to produce harmless compounds. Since
    the model is nonlinear partial differential equations (PDEs), coupled, and dynamic, computational
    algorithm with a specific numerical method, which is implicit Crank-Nicolson
    method, was employed to simulate the dynamical behaviour of the system. Furthermore,
    numerical results revealed that the proposed model demonstrated high accuracy when
    compared to the experimental data.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  18. Mahmud MH, Lee KE, Goh TL
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22873-22884.
    PMID: 28905277 DOI: 10.1007/s11356-017-0079-y
    The present paper aims to assess the phytoremediation performance based on pollution removal efficiency of the highly polluted region of Alur Ilmu urban river for its applicability of on-site treatment. Thirteen stations along Alur Ilmu were selected to produce thematic maps through spatial distribution analysis based on six water quality parameters of Malaysia's Water Quality Index (WQI) for dry and raining seasons. The maps generated were used to identify the highly polluted region for phytoremediation applicability assessment. Four free-floating plants were tested in treating water samples from the highly polluted region under three different conditions, namely controlled, aerated and normal treatments. The selected free-floating plants were water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), rose water lettuce (Pistia sp.) and pennywort (Centella asiatica). The results showed that Alur Ilmu was more polluted during dry season compared to raining season based on the water quality analysis. During dry season, four parameters were marked as polluted along Alur Ilmu, namely dissolve oxygen (DO), 4.72 mg/L (class III); ammoniacal nitrogen (NH3-N), 0.85 mg/L (class IV); total suspended solid (TSS), 402 mg/L (class V) and biological oxygen demand (BOD), 3.89 mg/L (class III), whereas, two parameters were classed as polluted during raining season, namely total suspended solid (TSS), 571 mg/L (class V) and biological oxygen demand (BOD), 4.01 mg/L (class III). The thematic maps generated from spatial distribution analysis using Kriging gridding method showed that the highly polluted region was recorded at station AL 5. Hence, water samples were taken from this station for pollution removal analysis. All the free-floating plants were able to reduce TSS and COD in less than 14 days. However, water hyacinth showed the least detrimental effect from the phytoremediation process compared to other free-floating plants, thus made it a suitable free-floating plants to be used for on-site treatment.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  19. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Water Res, 2012 Dec 1;46(19):6419-29.
    PMID: 23062787 DOI: 10.1016/j.watres.2012.09.014
    In this study, the operational factors affecting the bioregeneration of AO7-loaded MAMS particles in batch system, namely redox condition, initial acclimated biomass concentration, shaking speed and type of acclimated biomass were investigated. The results revealed that with the use of mixed culture acclimated to AO7 under anoxic/aerobic conditions, enhancement of the bioregeneration efficiency of AO7-loaded MAMS and the total removal efficiency of COD could be achieved when the bio-decolorization and bio-mineralization stages were fully aerated with dissolved oxygen above 7 mg/L. Shorter duration of bioregeneration was achieved by using relatively higher initial biomass concentration and lower shaking speed, respectively, whereas variations of biomass concentration and shaking speed did not have a pronounced effect on the bioregeneration efficiency. The duration and efficiency of bioregeneration process were greatly affected by the chemical structures of mono-azo dyes to which the biomasses were acclimated.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  20. Dadrasnia A, Azirun MS, Ismail SB
    BMC Biotechnol, 2017 Nov 28;17(1):85.
    PMID: 29179747 DOI: 10.1186/s12896-017-0395-9
    BACKGROUND: When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH.

    RESULTS: Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH3-N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI.

    CONCLUSIONS: Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH3-N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.

    Matched MeSH terms: Biological Oxygen Demand Analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links