Displaying publications 81 - 100 of 1423 in total

Abstract:
Sort:
  1. Vyshnevska IR, Storozhenko T, Kopytsya MP, Bila NV, Kis A, Kaaki M
    Wiad Lek, 2023;76(5 pt 1):911-919.
    PMID: 37326070 DOI: 10.36740/WLek202305104
    OBJECTIVE: The aim: To estimate the role of macrophage migration inhibitory factor and soluble ST2 in predicting the left ventricle remodeling six months after ST-segment elevation myocardial infarction.

    PATIENTS AND METHODS: Materials and methods: The study involved 134 ST-segment elevation myocardial infarction patients. Occurrence of post-percutaneous coronary (PCI) intervention epicardial blood flow of TIMI <3 or myocardial blush grade 0-1 along with ST resolution <70% within 2 hours after PCI was qualified as the no-reflow condition. Left ventricle remodeling was defined after 6-months as an increase in left ventricle end-diastolic volume and/or end-systolic volume by more than 10%.

    RESULTS: Results: A logistic regression formula was evaluated. Included biomarkers were macrophage migration inhibitory factor and sST2, left ventricle ejection fraction: Y=exp(-39.06+0.82EF+0.096ST2+0.0028MIF) / (1+exp(-39.06+0.82EF+0.096ST2+0.0028MIF)). The estimated range is from 0 to 1 point. Less than 0.5 determines an adverse outcome, and more than 0.5 is a good prognosis. This equation, with sensitivity of 77 % and specificity of 85%, could predict the development of adverse left ventricle remodeling six months after a coronary event (AUC=0.864, CI 0.673 to 0.966, p<0.05).

    CONCLUSION: Conclusions: A combination of biomarkers gives a significant predicting result in the formation of adverse left ventricular remodeling after ST-segment elevation myocardial infarction.

    Matched MeSH terms: Biomarkers
  2. Liew Y, Retinasamy T, Arulsamy A, Ali I, Jones NC, O'Brien TJ, et al.
    J Alzheimers Dis, 2023;94(s1):S253-S265.
    PMID: 37092226 DOI: 10.3233/JAD-230059
    BACKGROUND: Neuroinflammation is an innate immunological response of the central nervous system that may be induced by a brain insult and chronic neurodegenerative conditions. Recent research has shown that neuroinflammation may contribute to the initiation of Alzheimer's disease (AD) pathogenesis and associated epileptogenesis.

    OBJECTIVE: This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy.

    METHODS: The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review.

    RESULTS: Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy.

    CONCLUSION: Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.

    Matched MeSH terms: Biomarkers
  3. Szakmany T, Fitzgerald E, Garlant HN, Whitehouse T, Molnar T, Shah S, et al.
    Front Immunol, 2023;14:1308530.
    PMID: 38332914 DOI: 10.3389/fimmu.2023.1308530
    INTRODUCTION: Early diagnosis of sepsis and discrimination from SIRS is crucial for clinicians to provide appropriate care, management and treatment to critically ill patients. We describe identification of mRNA biomarkers from peripheral blood leukocytes, able to identify severe, systemic inflammation (irrespective of origin) and differentiate Sepsis from SIRS, in adult patients within a multi-center clinical study.

    METHODS: Participants were recruited in Intensive Care Units (ICUs) from multiple UK hospitals, including fifty-nine patients with abdominal sepsis, eighty-four patients with pulmonary sepsis, forty-two SIRS patients with Out-of-Hospital Cardiac Arrest (OOHCA), sampled at four time points, in addition to thirty healthy control donors. Multiple clinical parameters were measured, including SOFA score, with many differences observed between SIRS and sepsis groups. Differential gene expression analyses were performed using microarray hybridization and data analyzed using a combination of parametric and non-parametric statistical tools.

    RESULTS: Nineteen high-performance, differentially expressed mRNA biomarkers were identified between control and combined SIRS/Sepsis groups (FC>20.0, p<0.05), termed 'indicators of inflammation' (I°I), including CD177, FAM20A and OLAH. Best-performing minimal signatures e.g. FAM20A/OLAH showed good accuracy for determination of severe, systemic inflammation (AUC>0.99). Twenty entities, termed 'SIRS or Sepsis' (S°S) biomarkers, were differentially expressed between sepsis and SIRS (FC>2·0, p-value<0.05).

    DISCUSSION: The best performing signature for discriminating sepsis from SIRS was CMTM5/CETP/PLA2G7/MIA/MPP3 (AUC=0.9758). The I°I and S°S signatures performed variably in other independent gene expression datasets, this may be due to technical variation in the study/assay platform.

    Matched MeSH terms: Biomarkers
  4. Jayaraj R, Polpaya K, Kunale M, Kodiveri Muthukaliannan G, Shetty S, Baxi S, et al.
    Genes (Basel), 2022 Dec 10;13(12).
    PMID: 36553594 DOI: 10.3390/genes13122325
    Background: Chemoresistance is a significant barrier to combating head and neck cancer, and decoding this resistance can widen the therapeutic application of such chemotherapeutic drugs. This systematic review and meta-analysis explores the influence of microRNA (miRNA) expressions on chemoresistance in head and neck cancers (HNC). The objective is to evaluate the theragnostic effects of microRNA expressions on chemoresistance in HNC patients and investigate the utility of miRNAs as biomarkers and avenues for new therapeutic targets. Methods: We performed a comprehensive bibliographic search that included the SCOPUS, PubMed, and Science Direct bibliographic databases. These searches conformed to a predefined set of search strategies. Following the PRISMA guidelines, inclusion and exclusion criteria were framed upon completing the literature search. The data items extracted were tabulated and collated in MS Excel. This spreadsheet was used to determine the effect size estimation for the theragnostic effects of miRNA expressions on chemoresistance in HNC, the hazard ratio (HR), and 95% confidence intervals (95% CI). The comprehensive meta-analysis was performed using the random effects model. Heterogeneity among the data collected was assessed using the Q test, Tau2, I2, and Z measures. Publication bias of the included studies was checked using the Egger's bias indicator test, Orwin and classic fail-safe N test, Begg and Mazumdar rank collection test, and Duval and Tweedie's trim and fill methods. Results: After collating the data from 23 studies, dysregulation of 34 miRNAs was observed in 2189 people. These data were gathered from 23 studies. Out of the 34 miRNAs considered, 22 were up-regulated, while 12 were down-regulated. The TaqMan transcription kits were the most used miRNA profiling platform, and miR-200c was seen to have a mixed dysregulation. We measured the overall pooled effect estimate of HR to be 1.516 for the various analyzed miRNA at a 95% confidence interval of 1.303-1.765, with a significant p-value. The null hypothesis test's Z value was 5.377, and the p-value was correspondingly noted to be less than 0.0001. This outcome indicates that the risk of death is determined to be higher in up-regulated groups than in down-regulated groups. Among the 34 miRNAs that were investigated, seven miRNAs were associated with an improved prognosis, especially with the overexpression of these seven miRNAs (miR15b-5p, miR-548b, miR-519d, miR-1278, miR-145, miR-200c, Hsa- miR139-3p). Discussion: The findings reveal that intricate relationships between miRNAs' expression and chemotherapeutic resistance in HNC are more likely to exist and can be potential therapeutic targets. This review suggests the involvement of specific miRNAs as predictors of chemoresistance and sensitivity in HNC. The examination of the current study results illustrates the significance of miRNA expression as a theragnostic biomarker in medical oncology.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  5. Ling L, Aldoghachi AF, Chong ZX, Ho WY, Yeap SK, Chin RJ, et al.
    Int J Mol Sci, 2022 Dec 06;23(23).
    PMID: 36499713 DOI: 10.3390/ijms232315382
    Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  6. Zia S, Saleem M, Asif M, Hussain K, Butt BZ
    Inflammopharmacology, 2022 Dec;30(6):2211-2227.
    PMID: 36223063 DOI: 10.1007/s10787-022-01048-1
    Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p 
    Matched MeSH terms: Biomarkers/metabolism
  7. Hamad RS, Al Abdulsalam NK, Elrefaiy MA, El-Araby RE
    Trop Biomed, 2022 Dec 01;39(4):559-568.
    PMID: 36602216 DOI: 10.47665/tb.39.4.012
    Hepatocellular carcinoma (HCC) is a highly lethal malignancy and clinically validated medications have not yet been developed since there are no reliable diagnostic and prognostic biomarkers. Based on bioinformatics tools, TGF-b1 gene was the first target gene of miRNA-122, therefore this study was intended to assess the potential interconnection between TGF-b1 and miRNA-122 as a diagnostic and prognostic biomarker in the progression of HCC in patients with chronic hepatitis C (CHC) genotype (4). In this study, 100 people were included and split into two groups; group I: CHC patients without HCC that were classified into patients CHC without cirrhosis and CHC cirrhotic patients, group II: CHC patients with HCC, and healthy volunteers as control. The expression of miRNA-122 and TGF-b1 genes were analyzed using Real-Time PCR. An upregulation of miRNA-122 gene in cirrhotic and HCC patients compared to both chronic HCV non-cirrhotic, and cirrhotic patients, while, a decrease in expression of TGF-b1 was found in cirrhotic patients compared to HCV non-cirrhotic patients. Although significantly downregulated in HCC patients. Regression analysis indicated that the expression levels of miRNA-122 and TGF-b1 could be regarded as important indicators of the alterations in cirrhotic and HCC patients versus HCV non-cirrhotic patients, also with the chances of HCC versus cirrhosis patients. Our data indicated an interaction between miRNA-122 and TGF-b1, regulated gene expression and recommended the use of these parameters as noninvasive predictive biomarkers and therapeutic targets for HCV induced liver cirrhosis and HCC.
    Matched MeSH terms: Biomarkers
  8. Dessie BK, Mehari B, Osman M, Gari SR, Desta AF, Melaku S, et al.
    Biometals, 2022 Dec;35(6):1341-1358.
    PMID: 36163536 DOI: 10.1007/s10534-022-00448-8
    The Akaki River in the Upper Awash Basin, which flows through Addis Ababa, the capital city of Ethiopia, has been highly polluted by sewage from factories and residential areas. A population-based cross-sectional study was used to assess the association between trace elements and kidney injury from residents living in polluted areas downstream (Akaki-Kality) versus upstream (Gullele) in Sub-Cities of Addis Ababa. A total of 95 individuals (53 from Akaki-Kality and 42 from Gullele) were included in the study. Kidney injury molecule 1 (KIM-1), lead, arsenic, cadmium, cobalt, lead, manganese, zinc, iron, copper, chromium and nickel were evaluated in residents' urine and nail samples. A large proportion (74%) of the sample population contained KIM-1, including 81% residents in Akaki-Kality and 64% residents in Gullele. KIM-1 was, however, not significantly different (p = 0.05) between the two Sub-Cities, with median of 0.224 ng/mL in Akaki-Kality and 0.152 ng/mL in Gullele. Most of the analyzed elements, except Pb, As, Cd and Co, were found in all of the nail samples, with median (µg/g) in the range of 442‒714 Fe, 97.0‒246 Zn, 11.6‒24.1 Mn, 4.49‒5.85 Cu, 1.46‒1.66 Cr and 1.22‒1.41 Ni. The high incidence of KIM-1 indicates a potential for long term renal tubular damage among residents of the Sub-Cities. The concentrations of the elements in nails were, however, not significantly associated (p = 0.05) with the corresponding levels of KIM-1 in urine. Hence, the observed KIM-1 might be related to exposure to toxic substances or factors other than those included in this study.
    Matched MeSH terms: Biomarkers
  9. Hussain B, Sajad M, Usman H, A Al-Ghanim K, Riaz MN, Berenjian A, et al.
    Environ Res, 2022 Dec;215(Pt 1):114120.
    PMID: 36029837 DOI: 10.1016/j.envres.2022.114120
    Cytotoxicity in freshwater fishes induced by industrial effluents and dyes is a global issue. Trypan blue dye has many applications in different sectors, including laboratories and industries. This study determines to detect the cytotoxic effects of trypan blue dye in vivo. The objective of this study was to estimate the sub-lethal effects of azodye in fish. Cirrhinus mrigala, a freshwater fish, was exposed to three different grading concentrations of dye 5 mg/L, 10 mg/L, and 20 mg/L in a glass aquarium. Significant (p 
    Matched MeSH terms: Biomarkers
  10. Ooi ZS, Pang SW, Teow SY
    Malays J Pathol, 2022 Dec;44(3):415-428.
    PMID: 36591710
    Colorectal cancer (CRC) remains among the most commonly diagnosed cancers and has been on the rise. It is also one of the most lethal diseases globally, being the third leading cause of cancerrelated death. Depending on the stages and disease conditions, CRC is treated by surgery, chemo-, radio-therapy, immunotherapy or in combination. However, these therapies have subpar results with unwanted side effects, hence continuous effort is ongoing to explore new type of therapeutic modalities. Among the sub-types of CRC, KRAS, BRAF and NRAS mutated CRC comprise approximately 43%, 10% and 3% of the total cases, respectively. These mutations are associated with tumour progression and anti-epidermal growth factor receptor (EGFR) treatment resistance. Due to their important role in CRC, these genes have thus become targets in the development of novel treatments. In this paper, we discuss the current and upcoming treatment on CRC by targeting these mutated genes, with more focus on KRAS and BRAF due to the higher occurrence of mutations in CRC.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  11. Haarindraprasad R, Gopinath SCB, Veeradassan P
    Biotechnol Appl Biochem, 2022 Dec;69(6):2698-2712.
    PMID: 34997977 DOI: 10.1002/bab.2316
    A "Janus particle" refers to the production of two materials in a single system and shows a difference in physical characteristics, and two surfaces participate in the formation with different chemistries. This research generated the Janus using a hybrid of zinc oxide (ZnO) and gold (Au) on the sensor surface toward making high-performance DNA sensors. The Janus ZnO/Au-textured film was synthesized via the one-step sol-gel method, which involves a suitable ratio of a mixture of ZnO sol seed solution. The synthesized Janus ZnO/Au-textured film undergoes a low-temperature aqueous hydrothermal route to synthesize quasi-one-dimensional nanowires. The average grain size in the Janus ZnO/Au nanotextured wire was 41.60 nm. The fabricated nanotextured wire was further optimized by tuning the thickness and characterized by XRD and high-resolution microscopy. Electrical characterization was conducted on the Janus ZnO/Au nanotextured wire coupled with an interdigitated electrode sensor to detect the specific leptospirosis DNA strand. The generated device is capable of detecting lower DNA concentration at 1 × 10-13 M with a sensitivity of 8.54 MΩ M-1 cm-2 . The high performance is attained on linear concentrations of 10-6 -10-13 M with the determination coefficient, "I = 135437.63C-3609.07" R2 = 0.9551. A potential strategy is proposed as a base for developing different high-performance sensors.
    Matched MeSH terms: Biomarkers
  12. Kazemi T, Firgau E, Bunch D, Kahwash SB
    Malays J Pathol, 2022 Dec;44(3):523-526.
    PMID: 36591720
    Medium-chain acyl CoA dehydrogenase deficiency (MCADD) and other inborn errors of metabolism are common causes of Sudden Unexpected Deaths in Infancy (SUDI). If identified early or before metabolic decompensation, MCADD is manageable. In the US and other countries, identification of MCADD has improved through the routine use of newborn screening (NBS), which is able to identify most cases. This case study presented here occurred before NBS was implemented in Ohio for MCADD and outlines the typical clinical presentation, pathological features, and relevant biochemical and molecular markers for identifying MCADD. Genetic counselling should be sought for the family if MCADD is identified.
    Matched MeSH terms: Biomarkers
  13. Rashidah NH, Lim SM, Neoh CF, Majeed ABA, Tan MP, Khor HM, et al.
    Ageing Res Rev, 2022 Dec;82:101744.
    PMID: 36202312 DOI: 10.1016/j.arr.2022.101744
    This systematic review appraised previous findings on differential gut microbiota composition and intestinal permeability markers between frail and healthy older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on inclusion and exclusion criteria as well as assessed for risk of bias. The primary outcome was the differential composition of gut microbiota and/ or intestinal permeability markers between frail and healthy older adults. A total of 10 case-control studies and one cohort study were shortlisted. Based on consistent findings reported by more than one shortlisted study, the microbiota of frail older adults was characterised by decreased phylum Firmicutes, with Dialister, Lactobacillus and Ruminococcus being the prominent genera. Healthy controls, on the other hand, exhibited higher Eubacterium at the genera level. In terms of intestinal permeability, frail older adults were presented with increased serum zonulin, pro-inflammatory cytokines (TNF-α, HMGB-1, IL-6, IL1-ra, MIP-1β) and amino acids (aspartic acid and phosphoethanolamine) when compared to healthy controls. Altogether, frail elderlies had lower gut microbiota diversity and lower abundance of SCFA producers, which may have led to leaky guts, upregulated pro-inflammatory cytokines, frailty and sarcopenia.
    Matched MeSH terms: Biomarkers
  14. Low TY, Chen YJ, Ishihama Y, Chung MCM, Cordwell S, Poon TCW, et al.
    Mol Cell Proteomics, 2022 Dec;21(12):100436.
    PMID: 36309314 DOI: 10.1016/j.mcpro.2022.100436
    In 2021, the Asia-Oceania Human Proteome Organization (AOHUPO) initiated a new endeavor named the AOHUPO Online Education Series with the aim to promote scientific education and collaboration, exchange of ideas and culture among the young scientists in the AO region. Following the warm participation, the AOHUPO organized the second series in 2022, with the theme "The Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics". This time, the second AOHUPO Online Education Series was hosted by the UKM Medical Molecular Biology Institute (UMBI) affiliated to the National University of Malaysia (UKM) in Kuala Lumpur, Malaysia on three consecutive Fridays (11th, 18th and 25th of March). More than 300 participants coming from 29 countries/regions registered for this 3-days event. This event provided an amalgamation of six prominent speakers and all participants whose interests lay mainly in applying MS-based and non-MS-based proteomics for clinical investigation.
    Matched MeSH terms: Biomarkers
  15. Su KY, Koh Kok JY, Chua YW, Ong SD, Ser HL, Pusparajah P, et al.
    Expert Rev Mol Diagn, 2022 Dec;22(12):1057-1062.
    PMID: 36629056 DOI: 10.1080/14737159.2022.2166403
    INTRODUCTION: Extracellular vesicles (EVs) are spherical membrane-derived lipid bilayers released by cells. The human microbiota consists of trillions of microorganisms, with bacteria being the largest group secreting microbial EVs. The discovery of bacterial EVs (BEVs) has garnered interest among researchers as potential diagnostic markers, given that the microbiota is known to be associated with various diseases and EVs carry important macromolecular cargo for intercellular interaction.

    AREAS COVERED: The differential bacterial composition identified from BEVs isolated from biofluids between patients and healthy controls may be valuable for detecting diseases. Therefore, BEVs may serve as novel diagnostic markers. Literature search on PubMed and Google Scholar databases was conducted. In this special report, we outline the commonly used approach for investigating BEVs in biofluids, the 16S ribosomal RNA gene sequencing of V3-V4 hypervariable regions, and the recent studies exploring the potential of BEVs as biomarkers for various diseases.

    EXPERT OPINION: The emerging field of BEVs offers new possibilities for the diagnosis of various types of diseases, although there remain issues that need to be resolved in this research area to implement BEVs in clinical applications. Hence, it is important for future studies to take these challenges into consideration when investigating the diagnostic value of BEVs.

    Matched MeSH terms: Biomarkers
  16. Jamalpour S, Zain SM, Vazifehmand R, Mohamed Z, Pung YF, Kamyab H, et al.
    Sci Rep, 2022 Nov 24;12(1):20295.
    PMID: 36434110 DOI: 10.1038/s41598-022-23816-3
    Gestational diabetes mellitus (GDM) is a severe global issue that requires immediate attention. MicroRNA expression abnormalities are possibly disease-specific and may contribute to GDM pathological processes. To date, there is limited data on miRNA profiling in GDM, especially that involves a longitudinal study. Here, we performed miRNA expression profiling in the entire duration of pregnancy (during pregnancy until parturition and postpartum) using a miRNA- polymerase chain reaction array (miRNA-PCRArray) and in-silico analysis to identify unique miRNAs expression and their anticipated target genes in Malay maternal serum. MiRNA expression levels and their unique potential as biomarkers were explored in this work. In GDM patients, the expression levels of hsa-miR-193a, hsa-miR-21, hsa-miR-23a, and hsa-miR-361 were significantly increased, but miR-130a was significantly downregulated. The area under the curve (AUC) and receiver operating characteristic (ROC) curve study demonstrated that hsa-miR-193a (AUC = 0.89060 ± 04,470, P = 0.0001), hsa-miR-21 (AUC = 0.89500 ± 04,411, P = 0.0001), and miR-130a (AUC = 0.6939 ± 0.05845, P = 0.0025) had potential biomarker features in GDM. In-silico analysis also revealed that KLF (Kruppel-Like family of transcription factor), ZNF25 (Zinc finger protein 25), AFF4 (ALF transcription elongation factor 4), C1orf143 (long intergenic non-protein coding RNA 2869), SRSF2 (serine and arginine rich splicing factor 2), and ZNF655 (Zinc finger protein 655) were prominent genes targeted by the common nodes of miR23a, miR130, miR193a, miR21, and miR361.Our findings suggest that circulating microRNAs in the first trimester has the potential for GDM screening in the Malay population.
    Matched MeSH terms: Biomarkers
  17. Suan MAM, Chan HK, Sem X, Shilton S, Hassan MRA
    Sci Rep, 2022 Nov 23;12(1):20153.
    PMID: 36418369 DOI: 10.1038/s41598-022-24612-9
    This cross-sectional study evaluated the performance of the Aspartate Aminotransferase-to-Platelet Ratio Index (APRI) and the Fibrosis-4 (FIB-4) Index when they were used individually and in sequential combination to diagnose cirrhosis associated with hepatitis C virus infection. The final evaluation involved 906 people living with hepatitis C. The diagnostic performance of individual biomarkers at cut-off scores of 1.5 and 2.0 for the APRI and at 3.25 for the FIB-4 index was assessed. For the sequential combination method, the cirrhosis status of individuals with an APRI score between 1.0 and 1.5 were reassessed using the FIB-4. Transient elastography (TE) was used as the reference standard for diagnosing cirrhosis. The APRI, at a cut-off score of 1.5, showed a sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 44.9%, 97.6%, 91.1% and 76.3%, respectively. Increasing the cut-off score to 2.0 produced a much lower sensitivity (29.6%) and NPV (71.9%). The FIB-4, at a cut-off score of 3.25, yielded a sensitivity, specificity, PPV and NPV of 40.8%, 97.3%, 89.1% and 75.0%, respectively. The sequential combination method demonstrated a much more optimal diagnostic performance (50.2% sensitivity, 96.6% specificity, 89.0% PPV and 77.9% NPV). Overall, the APRI and FIB-4 Index performed better in diagnosing cirrhosis associated with hepatitis C when they were used in sequential combination.
    Matched MeSH terms: Biomarkers
  18. Khan FB, Uddin S, Elderdery AY, Goh KW, Ming LC, Ardianto C, et al.
    Cells, 2022 Nov 18;11(22).
    PMID: 36429092 DOI: 10.3390/cells11223664
    Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Accumulating evidences have highlighted the importance of exosomes and non-coding RNAs (ncRNAs) in cardiac physiology and pathology. It is in general consensus that exosomes and ncRNAs play a crucial role in the maintenance of normal cellular function; and interestingly it is envisaged that their potential as prospective therapeutic candidates and biomarkers are increasing rapidly. Considering all these aspects, this review provides a comprehensive overview of the recent understanding of exosomes and ncRNAs in CVDs. We provide a great deal of discussion regarding their role in the cardiovascular system, together with providing a glimpse of ideas regarding strategies exploited to harness their potential as a therapeutic intervention and prospective biomarker against CVDs. Thus, it could be envisaged that a thorough understanding of the intricacies related to exosomes and ncRNA would seemingly allow their full exploration and may lead clinical settings to become a reality in near future.
    Matched MeSH terms: Biomarkers
  19. Hanis F, Chung ELT, Kamalludin MH, Idrus Z
    J Equine Vet Sci, 2022 Nov;118:104130.
    PMID: 36182046 DOI: 10.1016/j.jevs.2022.104130
    The high prevalence of abnormal oral behavior (AOB) in working horses has been linked to management issues and the pathophysiology of this behavior remains unclear. Therefore, this study aims to elucidate the blood profile, hormones, and telomere length responses between low and high levels of AOB among different horse working groups. A total of 207 healthy horses from various breeds were initially selected from four working groups (leisure riding, equestrian, endurance, and patrolling) and observed for the time spent on AOB. Then, six horses each with higher and lower AOB than the population means were randomly selected from each of the working groups and categorized as high and low AOB horses, respectively. Blood samples were collected for hematology, biochemistry, cortisol, ghrelin, leptin, and relative telomere length analyzes. High AOB horses notably had higher values of glucose, alanine aminotransferase (ALT), alkaline phosphatase (ALP), and creatine kinase (CK) compared to low AOB horses. High AOB horses also recorded higher plasma cortisol and ghrelin, but lower leptin concentrations. Among working groups, both endurance and patrolling horses presented the highest values in sodium, potassium, chloride, phosphate, ALT, and CK. While patrolling horses had the lowest levels of urea, ALP, and albumin levels, equestrian and leisure horses recorded the highest and lowest plasma cortisol and leptin concentrations, respectively. Finally, the telomere length of endurance and patrolling horses were significantly greater than leisure and equestrian horses. The present findings suggest that AOB horses had distinctive physiological characteristics that could be linked to improper diet and a demanding workload, while ghrelin and leptin hormones could be potential biomarkers for this behavior.
    Matched MeSH terms: Biomarkers
  20. Rejeki PS, Baskara PG, Herawati L, Pranoto A, Setiawan HK, Lesmana R, et al.
    J Basic Clin Physiol Pharmacol, 2022 Nov 01;33(6):769-777.
    PMID: 35286051 DOI: 10.1515/jbcpp-2021-0393
    OBJECTIVES: Positive energy homeostasis due to overnutrition and a sedentary lifestyle triggers obesity. Obesity has a close relationship with elevated levels of betatrophin and may increase the risk of developing metabolic syndrome. Therefore, lifestyle modification through a nonpharmacological approach based on physical exercise is the right strategy in lowering betatrophin levels. This study aimed to analyze the effect of moderate-intensity interval and continuous exercises on decreased betatrophin levels and the association between betatrophin levels and obesity markers in women.

    METHODS: A total of 30 women aged 20-24 years old were randomly divided into three groups. Measurement of betatrophin levels using Enzyme-Linked Immunosorbent Assay (ELISA). Data analysis techniques used were one-way ANOVA and parametric linear correlation.

    RESULTS: The results showed that the average levels of betatrophin pre-exercise were 200.40 ± 11.03 pg/mL at CON, 203.07 ± 42.48 pg/mL at MIE, 196.62 ± 21.29 pg/mL at MCE, and p=0.978. Average levels of betatrophin post-exercise were 226.65 ± 18.96 pg/mL at CON, 109.31 ± 11.23 pg/mL at MIE, 52.38 ± 8.18 pg/mL at MCE, and p=0.000. Pre-exercise betatrophin levels were positively correlated with age, BMI, FM, WHR, FBG, and PBF (p≤0.001).

    CONCLUSIONS: Our study showed that betatrophin levels are decreased by 10 min post-MIE and post-MCE. However, moderate-intensity continuous exercise is more effective in lowering betatrophin levels than moderate-intensity interval exercise. In addition, pre-exercise betatrophin levels also have a positive correlation with obesity markers.

    Matched MeSH terms: Biomarkers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links