METHODS: Volumetric mammographic density was compared for 1501 Malaysian and 4501 Swedish healthy women, matched on age and body mass index. We used multivariable log-linear regression to determine the risk factors associated with mammographic density and mediation analysis to identify factors that account for differences in mammographic density between the two cohorts.
RESULTS: Compared to Caucasian women, percent density was 2.0% higher among Asian women (p breast cancer may be accounted for by height, weight, and parity. Given that pre-menopausal Asian and Caucasian women have similar population risk to breast cancer but different dense volume, development of more appropriate biomarkers of risk in pre-menopausal women is required.
PURPOSE: To determine if density of breast is an independent risk factor which will contribute to development of breast cancer.
MATERIALS AND METHODS: A prospective cohort study is carried out in two hospitals targeting adult female patients who presented to the Breast Clinic with symptoms suspicious of breast cancer. Participants recruited were investigated for breast cancer based on their symptoms. Breast density assessed from mammogram was correlated with tissue biopsy results and final diagnosis of benign or malignant breast disease.
RESULTS: Participants with dense breasts showed 29% increased risk of breast cancer when compared to those with almost entirely fatty breasts (odds ratio [OR] 1.29, 95% CI 0.38-4.44, P = .683). Among the postmenopausal women, those with dense breasts were 3.1 times more likely to develop breast cancer compared with those with fatty breasts (OR 3.125, 95% CI 0.72-13.64, P = .13). Moreover, the chance of developing breast cancer increases with age (OR 1.046, 95% CI 1.003-1.090, P breast decreases with increasing age (P breast density whether in the whole sample size, premenopausal, or postmenopausal group was consistently high.
CONCLUSION: Although results were not statistically significant, important association between breast density and risk of breast cancer cannot be ruled out. The study is limited by a small sample size and subjective assessment of breast density. More studies are required to reconcile the differences between studies of contrasting evidence.
METHODS: We conducted a cross-sectional study of 2,377 Malaysian women aged 40-74 years. Physical activity information was obtained at screening mammogram and mammographic density was measured from mammograms by the area-based STRATUS method (n = 1,522) and the volumetric Volpara™ (n = 1,200) method. Linear regression analyses were performed to evaluate the association between physical activity and mammographic density, adjusting for potential confounders.
RESULTS: We observed that recent physical activity was associated with area-based mammographic density measures among postmenopausal women, but not premenopausal women. In the fully adjusted model, postmenopausal women with the highest level of recent physical activity had 8.0 cm2 [95% confidence interval: 1.3, 14.3 cm2] lower non-dense area and 3.1% [0.1, 6.3%] higher area-based percent density, compared to women with the lowest level of recent physical activity. Physical activity was not associated to volumetric mammographic density.
CONCLUSIONS: Our findings suggest that the beneficial effects of physical activity on breast cancer risk may not be measurable through mammographic density. Future research is needed to identify appropriate biomarkers to assess the effect of physical activity on breast cancer risk.
METHODS: Using Singapore Malaysia Hospital-Based Breast Cancer Registry, clinical information was retrieved from 7064 stage I to III breast cancer patients who were diagnosed between 1990 and 2011 and underwent surgery. Predicted and observed probabilities of positive nodes and survival were compared for each subgroup. Calibration was assessed by plotting observed value against predicted value for each decile of the predicted value. Discrimination was evaluated by area under a receiver operating characteristic curve (AUC) with 95 % confidence interval (CI).
RESULTS: The median predicted probability of positive lymph nodes is 40.6 % which was lower than the observed 43.6 % (95 % CI, 42.5 %-44.8 %). The calibration plot showed underestimation for most of the groups. The AUC was 0.71 (95 % CI, 0.70-0.72). Cancermath predicted and observed overall survival probabilities were 87.3 % vs 83.4 % at 5 years after diagnosis and 75.3 % vs 70.4 % at 10 years after diagnosis. The difference was smaller for patients from Singapore, patients diagnosed more recently and patients with favorable tumor characteristics. Calibration plot also illustrated overprediction of survival for patients with poor prognosis. The AUC for 5-year and 10-year overall survival was 0.77 (95 % CI: 0.75-0.79) and 0.74 (95 % CI: 0.71-0.76).
CONCLUSIONS: The discrimination and calibration of CancerMath were modest. The results suggest that clinical application of CancerMath should be limited to patients with better prognostic profile.