Displaying publications 81 - 100 of 231 in total

Abstract:
Sort:
  1. Dussart P, Cartet G, Huguet P, Lévêque N, Hajjar C, Morvan J, et al.
    J Med Virol, 2005 Apr;75(4):559-65.
    PMID: 15714481
    An outbreak of acute hemorrhagic conjunctivitis occurred in French Guiana between April and July 2003, with approximately 6,000 cases in the two major cities Kourou and Cayenne. Since acute hemorrhagic conjunctivitis is not a notifiable disease in France, there was no registration of the number of cases. Therefore, these were estimated by comparing the consumption of antibiotic eye drops and ophthalmic ointments during 2002 and 2003. The outbreak rapidly spread into the Caribbean Islands, causing an outbreak in Guadeloupe in October. Viral isolates from conjunctival swabs of 16 patients were confirmed to be enterovirus by PCR directed to the 5' UTR of the genome. The isolates could not be neutralized by the Melnick intersecting pools, but were shown to be CV-A24 variant by limited sequencing within the VP1 and 3C regions of 12 strains. Phylogenetic analysis revealed that they were similar to the genotype III strains causing outbreaks in Korea 2002 and Malaysia 2003. The previous outbreak of conjunctivitis caused by CV-A24 in the Caribbean in the 1980s was also introduced from Asia, and disappeared after 3 years. This new introduction from Asia and its rapid spread into the Caribbean, where the infection disappeared after a few months, indicates that the CV-A24 variant has a different epidemiological pattern in this region compared to South East Asia, since it has not established an endemic infection. It had to be reintroduced from Asia, where it has been circulating since the 1970s.
    Matched MeSH terms: Communicable Diseases, Emerging/epidemiology*; Communicable Diseases, Emerging/virology
  2. Arbaiah, O., Badrul, H.A.S., Marzukhi, M.I., Mohd Yusof, Badaruddin, M., Mohd Adam
    MyJurnal
    Outbreak management in disaster has to be planned and implemented prior to, during and after the disaster is over. The risk of outbreaks following disaster is related to the size, health status and living conditions of the displaced population. The risk is increased due standing water in floods for vector borne diseases, overcrowding, inadequate water and sanitation and poor access to health care. The 2006-2007 flood in Johore resulted in 2 episodes of food poisoning and an outbreak of coxsackie A24 acute haemorrhagic conjunctivitis. Only 19,667 (12.5%) of the 157,018 displaced persons suffered from communicable diseases which comprised of acute respiratory disease 7361(28%), skin infection 4241(19%), acute gastroenteritis 1872(8%) and conjunctivitis 589 (2%). The routine disease surveillance and environmental control were enhanced to cover the relief centers and flood areas. Risk assessment of communicable disease carried out resulted in prompt control measures and good coverage of preventive activities. In conclusion the Johore State Health Department has successfully manage the outbreaks during the major flood.
    Matched MeSH terms: Communicable Diseases
  3. Junejo AR, Kaabar MKA, Li X
    Comput Math Methods Med, 2021;2021:9949328.
    PMID: 34938362 DOI: 10.1155/2021/9949328
    Developing new treatments for emerging infectious diseases in infectious and noninfectious diseases has attracted a particular attention. The emergence of viral diseases is expected to accelerate; these data indicate the need for a proactive approach to develop widely active family specific and cross family therapies for future disease outbreaks. Viral disease such as pneumonia, severe acute respiratory syndrome type 2, HIV infection, and Hepatitis-C virus can cause directly and indirectly cardiovascular disease (CVD). Emphasis should be placed not only on the development of broad-spectrum molecules and antibodies but also on host factor therapy, including the reutilization of previously approved or developing drugs. Another new class of therapeutics with great antiviral therapeutic potential is molecular communication networks using deep learning autoencoder (DL-AEs). The use of DL-AEs for diagnosis and prognosis prediction of infectious and noninfectious diseases has attracted a particular attention. MCN is map to molecular signaling and communication that are found inside and outside the human body where the goal is to develop a new black box mechanism that can serve the future robust healthcare industry (HCI). MCN has the ability to characterize the signaling process between cells and infectious disease locations at various levels of the human body called point-to-point MCN through DL-AE and provide targeted drug delivery (TDD) environment. Through MCN, and DL-AE healthcare provider can remotely measure biological signals and control certain processes in the required organism for the maintenance of the patient's health state. We use biomicrodevices to promote the real-time monitoring of human health and storage of the gathered data in the cloud. In this paper, we use the DL-based AE approach to design and implement a new drug source and target for the MCN under white Gaussian noise. Simulation results show that transceiver executions for a given medium model that reduces the bit error rate which can be learned. Then, next development of molecular diagnosis such as heart sounds is classified. Furthermore, biohealth interface for the inside and outside human body mechanism is presented, comparative perspective with up-to-date current situation about MCN.
    Matched MeSH terms: Communicable Diseases, Emerging/drug therapy*; Communicable Diseases, Emerging/epidemiology
  4. Durga Arinandini Arimuthu, Christopher Thiam Seong Lim
    MyJurnal
    Ochrobactrum anthropi is a rare nosocomial pathogen that is manifesting itself mostly in immunocompromised patients and those with indwelling catheters. Identification of the microorganism is challenging and the ability to survive in aquatic surroundings have made it a clinically significant pathogen. Furthermore, the clinical picture of
    O. anthropi infection, is not well described. It may manifest in any form of clinical infections though bacteremia is the most common mode of presentation reported in the limited literature. We report here two cases of O. anthropi bacteremia presenting in an immunocompetent and an immunocompromised host respectively with different clini- cal manifestation and response. In view of the highly variable presentation of O.anthropi, a high index of suspicion must be given to at risks patients to ensure the timely diagnosis and optimal clinical outcome.
    Matched MeSH terms: Communicable Diseases
  5. Tan CC
    Scand J Work Environ Health, 1991 Aug;17(4):221-30.
    PMID: 1925433
    Nurses are an integral component of the health care delivery system. In discharging their duties, nurses encounter a variety of occupational health problems which may be categorized into biological hazards, chemical hazards, physical hazards, and psychosocial hazards. A review of some examples of each of these four types of hazards is presented in this article. Particular attention has been devoted to hepatitis B, acquired immunodeficiency syndrome, tuberculosis, cytotoxic drugs, anesthetic agents, needlestick injury, back pain, and stress.
    Matched MeSH terms: Communicable Diseases
  6. Bellini WJ, Harcourt BH, Bowden N, Rota PA
    J Neurovirol, 2005 Oct;11(5):481-7.
    PMID: 16287690
    Nipah virus is a recently emergent paramyxovirus that is capable of causing severe disease in both humans and animals. The first outbreak of Nipah virus occurred in Malaysia and Singapore in 1999 and, more recently, outbreaks were detected in Bangladesh. In humans, Nipah virus causes febrile encephalitis with respiratory syndrome that has a high mortality rate. The reservoir for Nipah virus is believed to be fruit bats, and humans are infected by contact with infected bats or by contact with an intermediate animal host such as pigs. Person to person spread of the virus has also been described. Nipah virus retains many of the genetic and biologic properties found in other paramyxoviruses, though it also has several unique characteristics. However, the virologic characteristics that allow the virus to cause severe disease over a broad host range, and the epidemiologic, environmental and virologic features that favor transmission to humans are unknown. This review summarizes what is known about the virology, epidemiology, pathology, diagnosis and control of this novel pathogen.
    Matched MeSH terms: Communicable Diseases, Emerging/diagnosis*; Communicable Diseases, Emerging/epidemiology*; Communicable Diseases, Emerging/virology*
  7. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
    Matched MeSH terms: Communicable Diseases, Emerging/diagnosis; Communicable Diseases, Emerging/epidemiology; Communicable Diseases, Emerging/pathology*; Communicable Diseases, Emerging/virology
  8. Ochani RK, Batra S, Shaikh A, Asad A
    Infez Med, 2019 Jun 01;27(2):117-127.
    PMID: 31205033
    The Nipah virus was discovered twenty years ago, and there is considerable information available regarding the specificities surrounding this virus such as transmission, pathogenesis and genome. Belonging to the Henipavirus genus, this virus can cause fever, encephalitis and respiratory disorders. The first cases were reported in Malaysia and Singapore in 1998, when affected individuals presented with severe febrile encephalitis. Since then, much has been identified about this virus. These single-stranded RNA viruses gain entry into target cells via a process known as macropinocytosis. The viral genome is released into the cell cytoplasm via a cascade of processes that involves conformational changes in G and F proteins which allow for attachment of the viral membrane to the cell membrane. In addition to this, the natural reservoirs of this virus have been identified to be fruit bats from the genus Pteropus. Five of the 14 species of bats in Malaysia have been identified as carriers, and this virus affects horses, cats, dogs, pigs and humans. Various mechanisms of transmission have been proposed such as contamination of date palm saps by bat feces and saliva, nosocomial and human-to-human transmissions. Physical contact was identified as the strongest risk factor for developing an infection in the 2004 Faridpur outbreak. Geographically, the virus seems to favor the Indian sub-continent, Indonesia, Southeast Asia, Pakistan, southern China, northern Australia and the Philippines, as demonstrated by the multiple outbreaks in 2001, 2004, 2007, 2012 in Bangladesh, India and Pakistan as well as the initial outbreaks in Malaysia and Singapore. Multiple routes of the viremic spread in the human body have been identified such as the central nervous system (CNS) and respiratory system, while virus levels in the body remain low, detection in the cerebrospinal fluid is comparatively high. The virus follows an incubation period of 4 days to 2 weeks which is followed by the development of symptoms. The primary clinical signs include fever, headache, vomiting and dizziness, while the characteristic symptoms consist of segmental myoclonus, tachycardia, areflexia, hypotonia, abnormal pupillary reflexes and hypertension. The serum neutralization test (SNT) is the gold standard of diagnosis followed by ELISA if SNT cannot be carried out. On the other hand, treatment is supportive since there a lack of effective pharmacological therapy and only one equine vaccine is currently licensed for use. Prevention of outbreaks seems to be a more viable approach until specific therapeutic strategies are devised.
    Matched MeSH terms: Communicable Diseases, Emerging/epidemiology*; Communicable Diseases, Emerging/therapy; Communicable Diseases, Emerging/transmission; Communicable Diseases, Emerging/veterinary
  9. Singh S, Meher N, Mohammed A, Razab MKAA, Bhaskar LVKS, Nawi NM
    Medicine (Baltimore), 2023 Feb 03;102(5):e30284.
    PMID: 36749239 DOI: 10.1097/MD.0000000000030284
    The primary target of severe acute respiratory syndrome coronavirus 2 is the respiratory system including the nose and lungs, however, it can also damage the kidneys, cardiovascular system and gastrointestinal system. Many recent reports suggested that severe acute respiratory syndrome coronavirus 2 infections can also affect the central nervous system as well as peripheral nervous system that lead to the several neurological complications. The virus can break the blood brain barrier and enters the brain via haematological route or directly by the angiotensin-converting enzyme 2 receptors present on endothelial cells of many cerebral tissues. The neurological complications are manifested by headache, dizziness, encephalopathy, encephalitis, cerebrovascular disease, anosmia, hypogeusia, muscle damage, etc. This review article described the possible routes and mechanism of nervous system infection and the range of neurological complications of COVID-19 that may help the medical practitioners and researchers to improve the clinical treatment and reduce the mortality rate among patients with viral diseases.
    Matched MeSH terms: Communicable Diseases*
  10. Galler JR, Bringas-Vega ML, Tang Q, Rabinowitz AG, Musa KI, Chai WJ, et al.
    Neuroimage, 2021 05 01;231:117828.
    PMID: 33549754 DOI: 10.1016/j.neuroimage.2021.117828
    Approximately one in five children worldwide suffers from childhood malnutrition and its complications, including increased susceptibility to inflammation and infectious diseases. Due to improved early interventions, most of these children now survive early malnutrition, even in low-resource settings (LRS). However, many continue to exhibit neurodevelopmental deficits, including low IQ, poor school performance, and behavioral problems over their lifetimes. Most studies have relied on neuropsychological tests, school performance, and mental health and behavioral measures. Few studies, in contrast, have assessed brain structure and function, and to date, these have mainly relied on low-cost techniques, including electroencephalography (EEG) and evoked potentials (ERP). The use of more advanced methods of neuroimaging, including magnetic resonance imaging (MRI) and functional near-infrared spectroscopy (fNIRS), has been limited by cost factors and lack of availability of these technologies in developing countries, where malnutrition is nearly ubiquitous. This report summarizes the current state of knowledge and evidence gaps regarding childhood malnutrition and the study of its impact on neurodevelopment. It may help to inform the development of new strategies to improve the identification, classification, and treatment of neurodevelopmental disabilities in underserved populations at the highest risk for childhood malnutrition.
    Matched MeSH terms: Communicable Diseases
  11. Chan SK, Rahumatullah A, Lai JY, Lim TS
    Adv Exp Med Biol, 2017;1053:35-59.
    PMID: 29549634 DOI: 10.1007/978-3-319-72077-7_3
    Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
    Matched MeSH terms: Communicable Diseases/drug therapy*; Communicable Diseases/immunology
  12. Wong LP, Atefi N, AbuBakar S
    BMC Public Health, 2016 08 12;16:780.
    PMID: 27520825 DOI: 10.1186/s12889-016-3409-y
    BACKGROUND: As there is no specific treatment for dengue, early detection and access to proper treatment may lower dengue fatality. Therefore, having new techniques for the early detection of dengue fever, such as the use of dengue test kit, is vitally important. The aims of the study were: 1) identify factors associated with acceptance of a home self-test kit for dengue fever if the dengue test is available to the public and 2) find out the characteristics of the test kits that influence the use of the dengue test kit.

    METHODS: A national telephone survey was carried out with 2,512 individuals of the Malaysian public aged 18-60 years old. Individuals were contacted by random digit dialling covering the whole of Malaysia from February 2012 to June 2013.

    RESULTS: From 2,512 participants, 6.1 % reported to have heard of the availability of the dengue home test kit and of these, 44.8 % expressed their intention to use the test kit if it was available. Multivariate logistic regressions indicated that participants with primary (OR: 0.65; 95 % CI: 0.43-0.89; p = 0.02, vs. tertiary educational level) and secondary educational levels (OR: 0.73; 95 % CI: 0.57-0.90; p = 0.01, vs. tertiary educational level) were less likely than participants with a tertiary educational level to use a home self-testing dengue kit for dengue if the kit was available. Participants with lower perceived barriers to dengue prevention (level of barriers 0-5) were less likely (OR: 0.67, 95 % CI: 0.53-0.85, p 

    Matched MeSH terms: Communicable Diseases/diagnosis
  13. Lekko YM, Ooi PT, Omar S, Mazlan M, Ramanoon SZ, Jasni S, et al.
    Vet World, 2020 Sep;13(9):1822-1836.
    PMID: 33132593 DOI: 10.14202/vetworld.2020.1822-1836
    Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.
    Matched MeSH terms: Communicable Diseases
  14. Law KB, M Peariasamy K, Mohd Ibrahim H, Abdullah NH
    Sci Rep, 2021 10 18;11(1):20574.
    PMID: 34663839 DOI: 10.1038/s41598-021-00013-2
    The conventional susceptible-infectious-recovered (SIR) model tends to magnify the transmission dynamics of infectious diseases, and thus the estimated total infections and immunized population may be higher than the threshold required for infection control and eradication. The study developed a new SIR framework that allows the transmission rate of infectious diseases to decline along with the reduced risk of contact infection to overcome the limitations of the conventional SIR model. Two new SIR models were formulated to mimic the declining transmission rate of infectious diseases at different stages of transmission. Model A utilized the declining transmission rate along with the reduced risk of contact infection following infection, while Model B incorporated the declining transmission rate following recovery. Both new models and the conventional SIR model were then used to simulate an infectious disease with a basic reproduction number (r0) of 3.0 and a herd immunity threshold (HIT) of 0.667 with and without vaccination. Outcomes of simulations were assessed at the time when the total immunized population reached the level predicted by the HIT, and at the end of simulations. Further, all three models were used to simulate the transmission dynamics of seasonal influenza in the United States and disease burdens were projected and compared with estimates from the Centers for Disease Control and Prevention. For the simulated infectious disease, in the initial phase of the outbreak, all three models performed expectedly when the sizes of infectious and recovered populations were relatively small. As the infectious population increased, the conventional SIR model appeared to overestimate the infections even when the HIT was achieved in all scenarios with and without vaccination. For the same scenario, Model A appeared to attain the level predicted by the HIT and in comparison, Model B projected the infectious disease to be controlled at the level predicted by the HIT only at high vaccination rates. For infectious diseases with high r0, and at low vaccination rates, the level at which the infectious disease was controlled cannot be accurately predicted by the current theorem. Transmission dynamics of infectious diseases with herd immunity can be accurately modelled by allowing the transmission rate of infectious diseases to decline along with the reduction of contact infection risk after recovery or vaccination. Model B provides a credible framework for modelling infectious diseases with herd immunity in a randomly mixed population.
    Matched MeSH terms: Communicable Diseases/genetics; Communicable Diseases/transmission*
  15. Raza A, Ahmadian A, Rafiq M, Salahshour S, Naveed M, Ferrara M, et al.
    Adv Differ Equ, 2020;2020(1):663.
    PMID: 33250928 DOI: 10.1186/s13662-020-03116-8
    In this manuscript, we investigate a nonlinear delayed model to study the dynamics of human-immunodeficiency-virus in the population. For analysis, we find the equilibria of a susceptible-infectious-immune system with a delay term. The well-established tools such as the Routh-Hurwitz criterion, Volterra-Lyapunov function, and Lasalle invariance principle are presented to investigate the stability of the model. The reproduction number and sensitivity of parameters are investigated. If the delay tactics are decreased, then the disease is endemic. On the other hand, if the delay tactics are increased then the disease is controlled in the population. The effect of the delay tactics with subpopulations is investigated. More precisely, all parameters are dependent on delay terms. In the end, to give the strength to a theoretical analysis of the model, a computer simulation is presented.
    Matched MeSH terms: Communicable Diseases
  16. Hikmah N', Anuar TS
    Malays J Med Sci, 2020 Mar;27(2):151-158.
    PMID: 32788850 MyJurnal DOI: 10.21315/mjms2020.27.2.15
    Background: Mobile phones (MPs) have become one of the most indispensable accessories in social and professional life. Though they offer plenty of benefits, MPs are prolific breeding grounds for infectious pathogens in communities. Thus, the aim of this study was to identify the prevalence of bacterial contamination and determine antimicrobial susceptibility pattern of Staphylococcus aureus (S. aureus) from MPs.

    Methods: A cross-sectional study was conducted from March to July 2019 on 126 students and 37 laboratory staff/clinical instructors' MPs from the Faculty of Health Sciences, Universiti Teknologi MARA, Malaysia by a simple random sampling technique. Along with the questionnaire, a swab sample from each participant's MPs was collected and transported to the microbiology laboratory for bacterial culture as per standard microbiological procedures and antimicrobial susceptibility test by the disc diffusion technique. Data were analysed by the Statistical Package for Social Sciences Programme version 24.

    Results: All of the tested MPs were contaminated with either single or mix bacterial agents. Bacillus spp. (74.8%), coagulase-negative staphylococci (CoNS; 47.9%) and S. aureus (20.9%) were the most predominant bacterial isolates, whilst the least isolate was Proteus vulgaris (P. vulgaris) (2.5%). Oxacillin resistance was seen in 5.9% of S. aureus isolate. A comparison of bacteria type and frequency among gender showed a significant difference with P. vulgaris (P = 0.003) and among profession showed a significant difference with S. aureus (P = 0.004).

    Conclusion: The present study indicates that MPs can serve as a vector for both pathogenic and non-pathogenic organisms. Therefore, full guidelines about restricting the use of MPs in laboratory environments, hand hygiene and frequent decontamination of MPs are recommended to limit the risk of cross-contamination and healthcare-associated infections caused by MPs.

    Matched MeSH terms: Communicable Diseases
  17. SiouNing AS, Seong TS, Kondo H, Bhassu S
    Molecules, 2023 May 26;28(11).
    PMID: 37298833 DOI: 10.3390/molecules28114357
    An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions and breakthroughs should be achieved to control the spread of infectious diseases. MicroRNA (miRNA) is an endogenous small non-coding RNA that post-transcriptionally regulates the protein-coding genes. It involves various biological regulatory mechanisms in organisms such as cell differentiation, proliferation, immune responses, development, apoptosis, and others. Furthermore, an miRNA also acts as a mediator to either regulate host responses or enhance the replication of diseases during infection. Therefore, the emergence of miRNAs could be potential candidates for the establishment of diagnostic tools for numerous infectious diseases. Interestingly, studies have revealed that miRNAs can be used as biomarkers and biosensors to detect diseases, and can also be used to design vaccines to attenuate pathogens. This review provides an overview of miRNA biogenesis and specifically focuses on its regulation during infection in aquatic organisms, especially on the host immune responses and how miRNAs enhance the replication of pathogens in the organism. In addition to that, we explored the potential applications, including diagnostic methods and treatments, that can be employed in the aquaculture industry.
    Matched MeSH terms: Communicable Diseases*
  18. Raja NS, Ahmed MZ, Singh NN
    J Postgrad Med, 2005 Apr-Jun;51(2):140-5.
    PMID: 16006713
    Infectious diseases account for a third of all the deaths in the developing world. Achievements in understanding the basic microbiology, pathogenesis, host defenses and expanded epidemiology of infectious diseases have resulted in better management and reduced mortality. However, an emerging infectious disease, melioidosis, is becoming endemic in the tropical regions of the world and is spreading to non-endemic areas. This article highlights the current understanding of melioidosis including advances in diagnosis, treatment and prevention. Better understanding of melioidosis is essential, as it is life-threatening and if untreated, patients can succumb to it. Our sources include a literature review, information from international consensus meetings on melioidosis and ongoing discussions within the medical and scientific community.
    Matched MeSH terms: Communicable Diseases, Emerging/epidemiology*
  19. Rosfina Ghazali
    MyJurnal
    Melioidosis is a tropical infectious disease cause by gram-negative bacterium, Burkholderia pseudomallei. It is predominantly in tropical climate especially Southeast Asia and Northern Australia. This disease is associated with significant mortality due to early onset of sepsis.
    Matched MeSH terms: Communicable Diseases
  20. Phua KL, Lee LK
    J Public Health Policy, 2005 Apr;26(1):122-32.
    PMID: 15906881
    Challenges arising from epidemic infectious disease outbreaks can be more effectively met if traditional public health is enhanced by sociology. The focus is normally on biomedical aspects, the surveillance and sentinel systems for infectious diseases, and what needs to be done to bring outbreaks under control quickly. Social factors associated with infectious disease outbreaks are often neglected and the aftermath is ignored. These factors can affect outbreak severity, its rate and extent of spread, influencing the welfare of victims, their families, and their communities. We propose an agenda for research to meet the challenges of infectious disease outbreaks. What social factors led to the outbreak? What social factors affected its severity and rate and extent of spread? How did individuals, social groups, and the state react to it? What are the short- and long-term effects on individuals, social groups, and the larger society? What programs can be put in place to help victims, their families, and affected communities to cope with the consequences--impaired mental and physical health, economic losses, and disrupted communities? Although current research on infectious disease outbreaks pays attention to social factors related to causation, severity, rate and extent of spread, those dealing with the "social chaos" arising from outbreaks are usually neglected. Inclusion, by combining traditional public health with sociological analysis, will enrich public health theory and understanding of infectious disease outbreaks. Our approach will help develop better programs to combat outbreaks and equally important, to help survivors, their families, and their communities cope better with the aftermath.
    Matched MeSH terms: Communicable Diseases/ethnology; Communicable Diseases/epidemiology*; Communicable Diseases, Emerging/prevention & control
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links