Displaying publications 81 - 100 of 504 in total

Abstract:
Sort:
  1. Jong DL, Park BG, Jung KD
    Sains Malaysiana, 2008;37:233-237.
    Bottom-contact pentacene OTFTs are fabricated using cross-linked poly(vinyl alcohol) (PVA) insulator and its reliability characteristics are analyzed. The hysteresis of the OTFTs is mainly caused by the electrons that are injected from the gate electrode to the cross-linked PVA insulator. To block the injection of electrons, plasma-enhanced chemical vapor deposition (PECVD) SiO2 layer is inserted between the gate electrode and the cross-linked PVA layer, so that the minimum hysteresis can be obtained. In addition, the effects of the gate bias stress as a function of time is investigated to examine the long-term reliability of the device during the operation.
    Matched MeSH terms: Ethanol
  2. Toh W, Lai J, Wan Aizan W
    Sains Malaysiana, 2011;40:1179-1186.
    Several methods of incorporating sago pith waste (SPW) into poly(vinyl alcohol) (PVA) had been conducted: (i) dry blending (PVA/SPW/G), (ii) blending of SPW and pre-plasticized PVA (pPVA/SPW/G) and (iii) blending of pre-plasticized of both PVA and SPW (pPVA/pSPW). The effect of the compounding method on the mechanical and water absorption properties were investigated. The addition of SPW into PVA greatly reduced the tensile strength and elongation at break. The tensile strength and elongation at break of PVA/SPW composites with identical geometry during compounding stage (powder/powder and pellet/pellet), which were PVA/SPW/G and pPVA/pSPW yielded the highest value. The percentage of water absorbed by PVA/SPW/G (without pre-plasticization) was the highest, followed by pPVA/pSPW and pPVA/SPW/G.
    Matched MeSH terms: Ethanol
  3. Elmi Sharlina MS, Azwan Mat Lazim, Yaacob WA
    Sains Malaysiana, 2017;46:1549-1555.
    Kanji Dioscorea pentaphylla telah diubah suai dengan pensulfatan dan peneutralan bagi menghasilkan natrium
    kanji sulfat. Tindak balas pensulfatan dilakukan dengan asid sulfurik dalam etanol dan air pada suhu 0o
    C. Darjah
    penukargantian dikira berdasarkan peratus karbon dan sulfur yang ditentukan menggunakan penganalisis unsur CHNS.
    Natrium kanji sulfat yang mempunyai darjah penukargantian dan peratus nisbah berat hasil yang tinggi dipilih dan
    dicirikan dengan spektrum transformasi Fourier inframerah (FT-IR) dan profil pembelauan sinar-X (XRD). Kehadiran
    dua puncak getaran regangan C-O-S dan S=O dalam spektrum FT-IR dan puncak berbeza yang terhasil dalam corak
    difraktogram XRD membuktikan tindak balas berlaku pada struktur kanji. Sifat termal juga ditentukan dengan kalorimeter
    pengimbas pembezaan (DSC) dan analisis termogravimetri (TGA). Natrium kanji sulfat yang dihasilkan mempunyai
    kestabilan termal yang baik kerana mempunyai suhu penguraian pada 265o
    C. Natrium kanji sulfat ini sesuai dijadikan
    bahan tambahan dalam penghasilan hidrogel, organogel dan filem dengan sifat anionik kerana degradasi tidak terjadi
    di bawah suhu ini.
    Matched MeSH terms: Ethanol
  4. Liu J, Xuan D, Chai J, Guo D, Huang Y, Liu S, et al.
    ACS Omega, 2020 May 05;5(17):10011-10020.
    PMID: 32391489 DOI: 10.1021/acsomega.0c00365
    A mild and effective synthesis of resorcinol-furfural (RF) thermosetting resin was proposed with ethanol as a distinctive solvent, which, as a usually neglected factor, was shown to not only help form a homogeneous reaction system but also observably reduce the energy barriers between the early intermediates and transition states in addition reactions by explicit solvent effects, drawn from theoretical calculation conclusions. Besides, the para-additions on aromatic rings were more dominant than ortho-additions with the same reactants, which affected the final link types of monomers verified by Fourier transform infrared spectroscopy and two-dimensional nuclear magnetic resonance tests. The prepared resin can be assigned to a relatively fast gel speed and a high residual mass (65.25%) after pyrolysis in a N2 atmosphere by adjusting the molar ratios of F to R, and the curing of that was a complex reaction, with a curing temperature around 149 °C and an activation energy of about 49.11 kJ mol-1 obtained by the Kissinger method.
    Matched MeSH terms: Ethanol
  5. Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, et al.
    Bioresour Technol, 2020 Oct;313:123675.
    PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675
    An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
    Matched MeSH terms: Ethanol
  6. Ahmad W, Sethupathi S, Kanadasan G, Iberahim N
    Environ Sci Pollut Res Int, 2020 Jun;27(17):22065-22080.
    PMID: 32285395 DOI: 10.1007/s11356-020-08671-x
    Eggshell is a food waste produced worldwide in substantial amount with very limited recycling activity. In this study, the potential of ethanol-treated calcined eggshell was tested as sorbent for SO2 and H2S. Three variables were selected in the preparation of sorbents via response surface methodology (RSM), i.e., concentration of ethanol in water (50%, 70%, 90%), reaction temperature (20 °C, 40 °C, 60 °C), and contact time (30, 60, 90 min). Central composite design (CCD) was used to develop a quadratic model to correlate the operating variables with the adsorption capacity. Analysis of variance (ANOVA) was performed to identify the significant factors of the experimental design. It was found that the reaction temperature during the sorbent preparation was the most significant factor. The optimum preparation conditions using RSM were found at 20 °C of reaction temperature with 76.37% of ethanol concentration for 67 min of reaction time. The maximum adsorption capacity for the optimized sorbent was found to be 27.75 mg/g and 9.55 mg/g for SO2 and H2S, respectively. The prepared sorbent was more selective towards SO2 compared with H2S. Moreover, the presence of 40% of relative humidity in the inlet gas further enhanced the adsorption capacity of both gases. The ethanol-treated calcined eggshell was further substantiated by FESEM, BET, FTIR, XRD, and XRF. Results showed potential usage of eggshell as a sorbent for SO2 and H2S gases.
    Matched MeSH terms: Ethanol
  7. Amelia K, Khor CY, Shah FH, Bhore SJ
    Pharmacognosy Res, 2015 Apr-Jun;7(2):203-8.
    PMID: 25829796 DOI: 10.4103/0974-8490.150532
    Common beans (Phaseolus vulgaris L.) are widely consumed as a source of proteins and natural products. However, its yield needs to be increased. In line with the agenda of Phaseomics (an international consortium), work of expressed sequence tags (ESTs) generation from bean pods was initiated. Altogether, 5972 ESTs have been isolated. Alcohol dehydrogenase (AD) encoding gene cDNA was a noticeable transcript among the generated ESTs. This AD is an important enzyme; therefore, to understand more about it this study was undertaken.
    Matched MeSH terms: Ethanol
  8. Ho WY, Yeap SK, Ho CL, Abdul Rahim R, Alitheen NB
    PMID: 22973401 DOI: 10.1155/2012/417953
    Elephantopus scaber has been traditionally used as liver tonic. However, the protective effect of E. scaber on ethanol-induced liver damage is still unclear. In this study, we have compared the in vivo hepatoprotective effect of E. scaber with Phyllanthus niruri on the ethanol-induced liver damage in mice. The total phenolic and total flavanoid content of E. scaber ethanol extract were determined in this study. Accelerating serum biochemical profiles (including AST, ALT, ALP, triglyceride, and total bilirubin) associated with fat drop and necrotic body in the liver section were observed in the mice treated with ethanol. Low concentration of E. scaber was able to reduce serum biochemical profiles and the fat accumulation in the liver. Furthermore, high concentration of E. scaber and positive control P. niruri were able to revert the liver damage, which is comparable to the normal control. Added to this, E. scaber did not possess any oral acute toxicity on mice. These results suggest the potential effect of this extract as a hepatoprotective agent towards-ethanol induced liver damage without any oral acute toxicity effect. These activities might be contributed, or at least in part, by its high total phenolic and flavonoid contents.
    Matched MeSH terms: Ethanol
  9. Hui GT, Meng TK, Kassim MA
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1499-1512.
    PMID: 37580470 DOI: 10.1007/s00449-023-02917-x
    Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P ethanol-2-MeTHF mixture (2:1, v/v) with a solvent-to-biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.
    Matched MeSH terms: Ethanol
  10. Kuswandi B, Irmawati T, Hidayat MA, Jayus, Ahmad M
    Sensors (Basel), 2014;14(2):2135-49.
    PMID: 24473284 DOI: 10.3390/s140202135
    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.
    Matched MeSH terms: Ethanol/analysis*; Ethanol/standards
  11. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2009;58(9):467-71.
    PMID: 19654456
    N,N'-Carbonyl difatty amides (CDFAs) have been synthesized from palm oil using sodium ethoxide as catalyst. Ethyl fatty esters (EFEs) were produced as a by-product as well as glycerol. The synthesis was carried out by reflux palm oil and urea in presence of ethanol. In this process, palm oil gave 79% pure CDFAs after 8 hours and molar ratio of urea to palm oil was 6.2: 1 at 78 degrees C. Both CDFAs and EFEs have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Ethanol/analogs & derivatives; Ethanol/chemistry
  12. Hassan H, Othman MF, Zakaria ZA, Saad FFA, Abdul Razak HR
    Curr Radiopharm, 2021;14(2):131-144.
    PMID: 33115398 DOI: 10.2174/1874471013999201027215704
    BACKGROUND: Organic solvents play an indispensable role in most of the radiopharmaceutical production stages. It is almost impossible to remove them entirely in the final formulation of the product.

    OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.

    METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.

    RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).

    CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).

    Matched MeSH terms: Ethanol/analysis; Ethanol/chemistry
  13. Ho CW, Lazim A, Fazry S, Hussain Zaki UKH, Massa S, Lim SJ
    J Sci Food Agric, 2020 Feb;100(3):1012-1021.
    PMID: 31646636 DOI: 10.1002/jsfa.10103
    BACKGROUND: Wines are produced via the alcoholic fermentation of suitable substrates, usually sugar (sugar cane, grapes) and carbohydrates (wheat, grain). However, conventional alcoholic fermentation is limited by the inhibition of yeast by ethanol produced, usually at approximately 13-14%. Aside from that, soursop fruit is a very nutritious fruit, although it is highly perishable, and thus produces a lot of wastage. Therefore, the present study aimed to produce fermented soursop juice (soursop wine), using combination of two starter cultures, namely mushroom (Pleurotus pulmonarius) and yeast (Saccharomyces cerevisiae), as well as to determine the effects of fermentation on the physicochemical and antioxidant activities of fermented soursop juice. Optimisation of four factors (pH, temperature, time and culture ratio) using response surface methodology were performed to maximise ethanol production.

    RESULTS: The optimised values for alcoholic fermentation were pH 4.99, 28.29 °C, 131 h and a 0.42 culture ratio (42:58, P. pulmonarius mycelia:S. cerevisiae) with a predicted ethanol concentration of 22.25%. Through a verification test, soursop wine with 22.29 ± 0.52% ethanol was produced. The antioxidant activities (1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power) showed a significant (P ethanol production in soursop wine and higher antioxidant activities. Ultimately, this finding has high potential for application in the brewing industry to enhance the fermentation process, as well as in the development of an innovative niche product, reducing wastage by converting the highly-perishable fruit into wine with a more stable and longer shelf-life. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Ethanol/analysis; Ethanol/metabolism
  14. Golbabapour S, Gwaram NS, Al-Obaidi MM, Soleimani AF, Ali HM, Abdul Majid N
    Biomed Res Int, 2013;2013:703626.
    PMID: 24298554 DOI: 10.1155/2013/703626
    Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.
    Matched MeSH terms: Ethanol/adverse effects; Ethanol/pharmacology
  15. Hoidy WH, Ahmad MB, Al-Mulla EA, Yunus WZ, Ibrahim Na
    J Oleo Sci, 2010;59(5):229-33.
    PMID: 20431238
    Difatty acyl thiourea (DFAT), which has biological activities as antibiotics and antifungal, has been synthesized from palm oil and thiourea using sodium ethoxide as catalyst. Ethyl fatty ester (EFE) and glycerol were produced as by-products. The synthesis was carried out by reflux palm oil with thiourea in ethanol. In this process, palm oil converted to about 81% pure DFAT after 11 hour and molar ratio of thiourea to palm oil was 6.0: 1 at 78 degrees C. Elemental analysis, Fourier transform iInfrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique were used to characterize both DFAT and EFE.
    Matched MeSH terms: Ethanol/analogs & derivatives; Ethanol/chemistry
  16. Kosugi A, Tanaka R, Magara K, Murata Y, Arai T, Sulaiman O, et al.
    J Biosci Bioeng, 2010 Sep;110(3):322-5.
    PMID: 20547348 DOI: 10.1016/j.jbiosc.2010.03.001
    Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia.
    Matched MeSH terms: Ethanol/isolation & purification; Ethanol/metabolism*
  17. Tan IS, Lee KT
    Carbohydr Polym, 2015 Jun 25;124:311-21.
    PMID: 25839825 DOI: 10.1016/j.carbpol.2015.02.046
    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield.
    Matched MeSH terms: Ethanol/metabolism*; Ethanol/chemistry
  18. How KN, Lim PY, Wan Ahmad Kammal WSL, Shamsudin N
    Int J Dermatol, 2020 Jul;59(7):804-812.
    PMID: 32447767 DOI: 10.1111/ijd.14948
    OBJECTIVE: Antibiotics and retinoids have been used for acne vulgaris for decades. Though effective, each has its own drawbacks. Chemical peels have been used for treatment of acne vulgaris with inadequate clinical evidence. We sought to determine the efficacy and safety of Jessner's solution (JS) in comparison with salicylic acid (SA) 30% in the management of acne vulgaris and postacne hyperpigmentation in patients with colored skin.

    METHODS: A total of 36 subjects (94.5% Fitzpatick Type IV-V) were recruited in this randomized double-blinded, split-face, controlled trial. Each side of the face was randomly assigned for treatment with either JS or SA. Subjects were treated once fortnightly for a total of three sessions. Lesion counting, Michaelsson acne score (MAS), photographs, and postacne hyperpigmentation index (PAHPI) were used to objectively assess the improvement. Complications were assessed during each visit. Statistical analysis was conducted using SPSS v22.0. Significance was set at P = 0.05.

    RESULTS: At the end of therapy, significant reduction in inflammatory, noninflammatory lesions, MAS, and PAHPI scores (P 

    Matched MeSH terms: Ethanol/adverse effects; Ethanol/therapeutic use
  19. Mailankot M, Jayalekshmi H, Chakrabarti A, Alang N, Vasudevan DM
    Indian J Exp Biol, 2009 Jul;47(7):608-10.
    PMID: 19761047
    Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.
    Matched MeSH terms: Ethanol/antagonists & inhibitors*; Ethanol/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links