Displaying publications 81 - 100 of 630 in total

Abstract:
Sort:
  1. Anuar NFSK, Wahab RA, Huyop F, Amran SI, Hamid AAA, Halim KBA, et al.
    J Biomol Struct Dyn, 2021 Apr;39(6):2079-2091.
    PMID: 32174260 DOI: 10.1080/07391102.2020.1743364
    We previously reported on a mutant lipase KV1 (Mut-LipKV1) from Acinetobacter haemolyticus which optimal pH was raised from 8.0 to 11.0 after triple substitutions of surface aspartic acid (Asp) with lysine (Lys). Herein, this study further examined the Mut-LipKV1 by molecular docking, molecular dynamics (MD) simulations and molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations to explore the structural requirements that participated in the effective binding of tributyrin and its catalytic triad (Ser165, Asp259 and His289) and identify detailed changes that occurred post mutation. Mut-LipKV1 bound favorably with tributyrin (-4.1 kcal/mol) and formed a single hydrogen bond with His289, at pH 9.0. Despite the incongruent docking analysis data, results of MD simulations showed configurations of both the tributyrin-Mut-LipKV1 (RMSD 0.3 nm; RMSF 0.05 - 0.3 nm) and the tributyrin-wildtype lipase KV1 (tributyrin-LipKV1) complexes (RMSD 0.35 nm; RMSF 0.05 - 0.4 nm) being comparably stable at pH 8.0. MM-PBSA analysis indicated that van der Waals interactions made the most contribution during the molecular binding process, with the Mut-LipKV1-tributyrin complex (-44.04 kcal/mol) showing relatively lower binding energy than LipKV1-tributyrin (-43.83 kcal/mol), at pH 12.0. All tributyrin-Mut-LipKV1 complexes displayed improved binding free energies over a broader pH range from 8.0 - 12.0, as compared to LipKV1-tributyrin. Future empirical works are thus, important to validate the improved alkaline-stability of Mut-LipKV1. In a nutshell, our research offered a considerable insight for further improving the alkaline tolerance of lipases.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  2. Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, et al.
    Comput Biol Chem, 2020 Dec;89:107378.
    PMID: 33002716 DOI: 10.1016/j.compbiolchem.2020.107378
    Neurodegenerative diseases have complex etiology and pose a challenge to scientists to develop simple and cost-effective synthetic compounds as potential drug candidates for such diseases. Here, we report an extension of our previously published in silico screening, where we selected four new compounds as AChE inhibitors. Further, based on favorable binding possess, MD simulation and MMGBSA, two most promising compounds (3a and 3b) were selected, keeping in view the ease of synthesis and cost-effectiveness. Due to the critical role of BChE, LOX and α-glucosidase in neurodegeneration, the selected compounds were also screened against these enzymes. The IC50 values of 3a against AChE and BChE found to be 12.53 and 352.42 μM, respectively. Moderate to slight inhibitions of 45.26 % and 28.68 % were presented by 3a against LOX and α-glucosidase, respectively, at 0.5 mM. Insignificant inhibitions were observed with 3b against the four selected enzymes. Further, in vivo trial demonstrated that 3a could significantly diminish AChE levels in the mice brain as compared to the control. These findings were in agreement with the histopathological analysis of the brain tissues. The results corroborate that selected compounds could serve as a potential lead for further development and optimization as AChE inhibitors to achieve cost-effective anti-Alzheimer's drugs.
    Matched MeSH terms: Molecular Docking Simulation
  3. Arafath MA, Al-Suede FSR, Adam F, Al-Juaid S, Khadeer Ahamed MB, Majid AMSA
    Drug Dev Res, 2019 09;80(6):778-790.
    PMID: 31215682 DOI: 10.1002/ddr.21559
    The bidentate N-cyclohexyl-2-(3-hydroxy-4-methoxybenzylidene)hydrazine-1-carbothioamide Schiff base ligand (HL) was coordinated to divalent nickel, palladium and platinum ions to form square planar complexes. The nickel and palladium complexes, [NiL2 ], [PdL2 ] form square planar complexes with 2:1 ligand to metal ratio. The platinum complex, [PtL(dmso)Cl] formed a square planar complex with 1:1 ligand to metal ratio. Platinum undergoes in situ reaction with DMSO before complexing with the ligand in solution. The cytotoxicity of HL, [NiL2 ], [PdL2 ], and [PtL(dmso)Cl] were evaluated against human colon cancer cell line (HCT-116), human cervical cancer (Hela) cell line, melanoma (B16F10) cells, and human normal endothelial cell lines (Eahy926) by MTT assay. The [NiL2 ] complex displayed selective cytotoxic effect against the HCT 116 cancer cell line with IC50 of 7.9 ± 0.2 μM. However, HL, [PdL2 ], and [PtL(dmso)Cl] only exhibited moderate cytotoxic activity with IC50 = 75.9 ± 2.4, 100.0 ± 1.8, and 101.0 ± 3.6 μM, respectively. The potent cytotoxicity of [NiL2 ] was characterized using Hoechst and Rhodamine assays. The nickel complex, [NiL2 ], caused remarkable nuclear condensation and reduction in mitochondrial membrane potential. In addition, molecular docking studies confirms that [NiL2 ] possesses significant binding efficiency with Tyrosine kinase. Altogether, the results revealed that [NiL2 ] exhibits cytotoxicity against the cancer cells via Tyrosine kinase-induced proapoptosis pathway. This study demonstrates that the [NiL2 ] complex could be a promising therapeutic agent against colorectal carcinoma.
    Matched MeSH terms: Molecular Docking Simulation
  4. Aravind SR, Joseph MM, George SK, Dileep KV, Varghese S, Rose-James A, et al.
    Int J Biochem Cell Biol, 2015 Feb;59:153-66.
    PMID: 25541375 DOI: 10.1016/j.biocel.2014.11.019
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells, without causing significant toxicity in normal tissues. We previously reported that galactoxyloglucan (PST001) possesses significant antitumor and immunomodulatory properties. However, the exact mechanism in mediating this anticancer effect is unknown. This study, for the first time, indicated that PST001 sensitizes non-small cell lung cancer (A549) and nasopharyngeal (KB) cells to TRAIL-mediated apoptosis. In vitro studies suggested that PST001 induced apoptosis primarily via death receptors and predominantly activated caspases belonging to the extrinsic apoptotic cascade. Microarray profiling of PST001 treated A549 and KB cells showed the suppression of survivin (BIRC5) and anti-apoptotic Bcl-2, as well as increased cytochrome C. TaqMan low density array analysis of A549 cells also confirmed that the induction of apoptosis by the polysaccharide occurred through the TRAIL-DR4/DR5 pathways. This was finally confirmed by in silico analysis, which revealed that PST001 binds to TRAIL-DR4/DR5 complexes more strongly than TNF and Fas ligand-receptor complexes. In summary, our results suggest the potential of PST001 to be developed as an anticancer agent that not only preserves innate biological activity of TRAIL, but also sensitizes cancer cells to TRAIL-mediated apoptosis.
    Matched MeSH terms: Molecular Docking Simulation
  5. Arfan M, Siddiqui SZ, Abbasi MA, Rehman A, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2018 Nov;31(6 (Supplementary):2697-2708.
    PMID: 30587482
    The research was aimed to unravel the enzymatic potential of sequentially transformed new triazoles by chemically converting 4-methoxybenzoic acid via Fischer's esterification to 4-methoxybenzoate which underwent hydrazinolysis and the corresponding hydrazide (1) was cyclized with phenyl isothiocyanate (2) via 2-(4-methoxybenzoyl)-N-phenylhydrazinecarbothioamide (3); an intermediate to 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-thiol (4). The electrophiles; alkyl halides 5(a-g) were further reacted with nucleophilic S-atom to attain a series of S-alkylated 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols 6(a-g). Characterization of synthesized compounds was accomplished by contemporary spectral techniques such as FT-IR, 1H-NMR, 13C-NMR and EI-MS. Excellent cholinesterase inhibitory potential was portrayed by 3-(n-heptylthio)-5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole; 6g against AChE (IC50; 38.35±0.62μM) and BChE (IC50; 147.75±0.67μM) enzymes. Eserine (IC50; 0.04±0.01μM) was used as reference standard. Anti-proliferative activity results ascertained that derivative encompassing long straight chain substituted at S-atom of the moiety was the most potent with 4.96 % cell viability (6g) at 25μM and with 2.41% cell viability at 50μMamong library of synthesized derivatives. In silico analysis also substantiated the bioactivity statistics.
    Matched MeSH terms: Molecular Docking Simulation/methods*
  6. Ariffin NHM, Hasham R, Hamzah MAAM, Park CS
    Fitoterapia, 2024 Jan;172:105755.
    PMID: 38000761 DOI: 10.1016/j.fitote.2023.105755
    Ficus deltoidea was known for its potent antioxidant, anti-melanogenic and photoprotective skin barrier activities. These properties are contributed by its biomarkers which are vitexin and isovitexin. This study aims to optimize the yield of methanolic extraction of Ficus deltoidea leaves (EFD) and evaluate their effects on skin barrier function and hydration. For optimization, Box-Behnken design was utilized to investigate the effects of methanol concentration, sonication time, and solvent-to-sample ratio on the yields of vitexin and isovitexin in EFD. The optimal yields obtained were 32.29 mg/g for vitexin and 35.87 mg/g for isovitexin. The optimum extraction conditions were 77.66% methanol concentration, 20.03 min sonication time, and 19.88 mL/g solvent-to-sample ratio. The quantitative real-time polymerase chain reaction was utilized to measure variant marker genes of transglutaminase-1, caspase 14, ceramide synthase 3, involucrin, and filaggrin of EFD-induced keratinocyte differentiation by in vitro study. Exposure to EFD has elevated the mRNA levels of all tested marker genes by 0.7-9.2 folds. Then, in vivo efficacy study was conducted on 20 female subjects for 14 days to evaluate skin biophysical assessment of hydration. EFD topical formulation treatment successfully increased skin hydration on day 7 (43.74%) and day 14 (47.23%). In silico study by molecular docking was performed to identify intermolecular binding interactions of vitexin and isovitexin with the interested proteins of tested marker genes. The result of molecular docking to the interested proteins revealed a similar trend with real-time PCR data. In conclusion, EFD potentially enhanced the skin barrier function and hydration of human skin cells.
    Matched MeSH terms: Molecular Docking Simulation
  7. Arshad A, Ahemad S, Saleem H, Saleem M, Zengin G, Abdallah HH, et al.
    Biomolecules, 2021 01 04;11(1).
    PMID: 33406643 DOI: 10.3390/biom11010053
    Heliotropium is one of the most important plant genera to have conventional folklore importance, and hence is a potential source of bioactive compounds. Thus, the present study was designed to explore the therapeutic potential of Heliotropium crispum Desf., a relatively under-explored medicinal plant species. Methanolic extracts prepared from a whole plant of H. crispum were studied for phytochemical composition and possible in vitro and in silico biological properties. Antioxidant potential was assessed via six different assays, and enzyme inhibition potential against key clinical enzymes involved in neurodegenerative diseases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), diabetes (α-amylase and α-glucosidase), and skin problems (tyrosinase) was assayed. Phytochemical composition was established via determination of the total bioactive contents and reverse phase ultra-high performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Chemical profiling revealed the tentative presence of 50 secondary metabolites. The plant extract exhibited significant inhibition against AChE and BChE enzymes, with values of 3.80 and 3.44 mg GALAE/g extract, respectively. Further, the extract displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 43.19 and 41.80 mg TE/g extract, respectively. In addition, the selected compounds were then docked against the tested enzymes, which have shown high inhibition affinity. To conclude, H. crispum was found to harbor bioactive compounds and showed potent biological activities which could be further explored for potential uses in nutraceutical and pharmaceutical industries, particularly as a neuroprotective agent.
    Matched MeSH terms: Molecular Docking Simulation*
  8. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al.
    Bioorg Chem, 2017 06;72:21-31.
    PMID: 28346872 DOI: 10.1016/j.bioorg.2017.03.007
    On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC50=8.15±0.03-354.67±0.19μM) as compared to standard thiourea (IC50=21.25±0.15μM). It is worth mentioning that derivatives 7 (IC50=12.07±0.05μM), 8 (IC50=10.57±0.12μM), 11 (IC50=13.76±0.02μM), 14 (IC50=15.70±0.12μM) and 22 (IC50=8.15±0.03μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 1-25 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e.2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme.
    Matched MeSH terms: Molecular Docking Simulation
  9. Arumugam AC, Agharbaoui FE, Khazali AS, Yusof R, Abd Rahman N, Ahmad Fuaad AAH
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382015 DOI: 10.1080/07391102.2020.1866074
    Dengue virus (DV) infection is one of the main public health concerns, affecting approximately 390 million people worldwide, as reported by the World Health Organization. Yet, there is no antiviral treatment for DV infection. Therefore, the development of potent and nontoxic anti-DV, as a complement for the existing treatment strategies, is urgently needed. Herein, we investigate a series of small peptides inhibitors of DV antiviral activity targeting the entry process as the promising strategy to block DV infection. The peptides were designed based on our previously reported peptide sequence, DN58opt (TWWCFYFCRRHHPFWFFYRHN), to identify minimal effective inhibitory sequence through molecular docking and dynamics studies. The in silico designed peptides were synthesized using conventional Fmoc solid-phase peptide synthesis chemistry, purified by RP-HPLC and characterized using LCMS. Later, they were screened for their antiviral activity. One of the peptides, AC 001, was able to reduce about 40% of DV plaque formation. This observation correlates well with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis - AC 001 showed the most favorable binding affinity through 60 ns simulations. Pairwise residue decomposition analysis has revealed four key residues that contributed to the binding of these peptides into the DV2 E protein pocket. This work identifies the minimal peptide sequence required to inhibit DV replication and explains the behavior observed on an atomic level using computational study.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  10. Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AA, Abdul Rahim R, et al.
    Sci Rep, 2021 Aug 24;11(1):17094.
    PMID: 34429465 DOI: 10.1038/s41598-021-96524-z
    Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.
    Matched MeSH terms: Molecular Docking Simulation
  11. Ashraf Z, Rafiq M, Nadeem H, Hassan M, Afzal S, Waseem M, et al.
    PLoS One, 2017;12(5):e0178069.
    PMID: 28542395 DOI: 10.1371/journal.pone.0178069
    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
    Matched MeSH terms: Molecular Docking Simulation
  12. Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K, et al.
    Drug Des Devel Ther, 2019;13:1643-1657.
    PMID: 31190743 DOI: 10.2147/DDDT.S178595
    BACKGROUND: The amide derivatives of nonsteroidal anti-inflammatory drugs have been reported to possess antitumor activity. The present work describes the synthesis of dexibuprofen amide analogues (4a-j) as potential anticancer agents.

    METHODS: The title amides (4a-j) were obtained by simple nucleophilic substitution reaction of dexibuprofen acid chloride with substituted amines in good yield and chemical structures were confirmed by FTIR, 1H NMR, 13C NMR and mass spectral data.

    RESULTS: The brine shrimp lethality assay results showed that all of the synthesized compounds are non-toxic to shrimp larvae. The inhibitory effects on tumor growth were evaluated and it was observed that N-(2,5-dichlorophenyl)-2-(4-isobutylphenyl) propionamide (4e) and N-(2-chlorophenyl)-2-(4-isobutylphenyl) propionamide (4g) exhibited excellent antitumor activity compared to all other derivatives. The compound 4e bearing 2,5-dichloro substituted phenyl ring and 4g possesses 2-chloro substituted phenyl ring exhibited 100% inhibition of the tumor growth. The anticancer activity was evaluated against breast carcinoma cell line (MCF-7) and it was observed that derivative 4e exhibited excellent growth inhibition of cancer cells with IC50 value of 0.01±0.002 µm, which is better than the standard drugs. The docking studies against breast cancer type 1 susceptibility protein BRCA1 (PDBID 3K0H) exhibited good binding affinities, which are in good agreement with the wet lab results. The compounds 4e and 4g showed the binding energy values of -6.39 and -6.34 Kcal/mol, respectively. The molecular dynamic (MD) simulation was also carried out to evaluate the residual flexibility of the best docking complexes of compounds 4e and 4g. The MD simulation analysis assured that the 4e formed a more stable complex with the target protein than the 4g. The synthesized amide derivatives exhibited were devoid of gastrointestinal side effects and no cytotoxic effects against human normal epithelial breast cell line (MCF-12A) were found.

    CONCLUSION: Based upon our wet lab and dry lab findings we propose that dexibuprofen analogue 4e may serve as a lead structure for the design of more potent anticancer drugs.

    Matched MeSH terms: Molecular Docking Simulation*
  13. Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, et al.
    Future Microbiol, 2021 Nov;16(16):1289-1301.
    PMID: 34689597 DOI: 10.2217/fmb-2021-0024
    COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
    Matched MeSH terms: Molecular Docking Simulation
  14. Asngari NJM, Bakar KA, Feroz SR, Razak FA, Halim AAA
    Biophys Chem, 2024 Feb;305:107140.
    PMID: 38118338 DOI: 10.1016/j.bpc.2023.107140
    Odanacatib (ODN) is a selective cathepsin K inhibitor that acts as an anti-resorptive agent to treat osteoporosis. ODN is also found effective in reducing the effect of severe periodontitis. The interaction between ODN and human serum albumin (HSA) was investigated using spectroscopic, microscopic, and in silico approaches to characterize their binding. The fluorescence intensity of HSA increased upon the addition of increasing concentrations of ODN accompanied by blueshift in the fluorescence spectrum, which suggested hydrophobic formation around the microenvironment of the fluorophores upon ODN binding. A moderate binding affinity was obtained for ODN-HSA binding, with binding constant (Ka) values of ∼104 M-1. Circular dichroism results suggested that the overall secondary and tertiary structures of HSA were both only slightly altered upon ODN binding. The surface morphology of HSA was also affected upon ODN binding, showing aggregate formation. Drug displacement and molecular docking results revealed that ODN preferably binds to site III in subdomain IB of HSA, while molecular dynamics simulations indicated formation of a stable protein complex when site III was occupied by ODN. The ODN-HSA complex was mainly stabilized by a combination of hydrogen bonding, hydrophobic interactions, and van der Waals forces. These findings provide additional information to understand the interaction mechanism of ODN in blood circulation and may help in future improvements on the adverse effects of ODN.
    Matched MeSH terms: Molecular Docking Simulation
  15. Athar Abbasi M, Raza H, Aziz-Ur-Rehman, Zahra Siddiqui S, Adnan Ali Shah S, Hassan M, et al.
    Bioorg Chem, 2019 03;83:63-75.
    PMID: 30342387 DOI: 10.1016/j.bioorg.2018.10.018
    Present work aimed to synthesize some unique bi-heterocyclic benzamides as lead compounds for the in vitro inhibition of urease enzyme, followed by in silico studies. These targeted benzamides were synthesized in good yields through a multi-step protocol and their structures were confirmed by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening results showed that most of the ligands exhibited good inhibitory potentials against the urease. Chemo-informatics analysis envisaged that all these compounds obeyed the Lipinski's rule. Molecular docking results showed that 7h exhibited good binding energy value (-8.40 kcal/mol) and was bound within the active region of urease enzyme. From the present investigation, it was inferred that some of these potent urease inhibitors might serve as novel templates in drug designing.
    Matched MeSH terms: Molecular Docking Simulation
  16. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N
    PLoS One, 2019;14(5):e0197644.
    PMID: 31145747 DOI: 10.1371/journal.pone.0197644
    Stone fish is an under-utilized sea cucumber with many health benefits. Hydrolysates with strong ACE-inhibitory effects were generated from stone fish protein under the optimum conditions of hydrolysis using bromelain and fractionated based on hydrophobicity and isoelectric properties of the constituent peptides. Five novel peptide sequences with molecular weight (mw) < 1000 daltons (Da) were identified using LC-MS/MS. The peptides including Ala-Leu-Gly-Pro-Gln-Phe-Tyr (794.44 Da), Lys-Val-Pro-Pro-Lys-Ala (638.88 Da), Leu-Ala-Pro-Pro-Thr-Met (628.85 Da), Glu-Val-Leu-Ile-Gln (600.77 Da) and Glu-His-Pro-Val-Leu (593.74 Da) were evaluated for ACE-inhibitory activity and showed IC50 values of 0.012 mM, 0.980 mM, 1.310 mM, 1.440 mM and 1.680 mM, respectively. The ACE-inhibitory effects of the peptides were further verified using molecular docking study. The docking results demonstrated that the peptides exhibit their effect mainly via hydrogen and electrostatic bond interactions with ACE. These findings provide evidence about stone fish as a valuable source of raw materials for the manufacture of antihypertensive peptides that can be incorporated to enhance therapeutic relevance and commercial significance of formulated functional foods.
    Matched MeSH terms: Molecular Docking Simulation*
  17. Ayipo YO, Ahmad I, Najib YS, Sheu SK, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Mar;41(5):1959-1977.
    PMID: 35037841 DOI: 10.1080/07391102.2022.2026818
    The nsp3 macrodomain and nsp12 (RdRp) enzymes are strongly implicated in the virulent regulation of the host immune response and viral replication of SARS-CoV-2, making them plausible therapeutic targets for mitigating infectivity. Remdesivir remains the only FDA-approved small-molecule inhibitor of the nsp12 in clinical conditions while none has been approved yet for the nsp3 macrodomain. In this study, 69,067 natural compounds from the IBScreen database were screened for efficacious potentials with mechanistic multitarget-directed inhibitory pharmacology against the dual targets using in silico approaches. Standard and extra precision (SP and XP) Maestro glide docking analyses were employed to evaluate their inhibitory interactions against the enzymes. Four compounds, STOCK1N-45901, 03804, 83408, 08377 consistently showed high XP scores against the respective targets and interacted strongly with pharmacologically essential amino acid and RNA residues, in better terms than the standard, co-crystallized inhibitors, GS-441524 and remdesivir. Further assessments through the predictions of ADMET and mutagenicity distinguished STOCK1N-45901, a natural derivative of o-hydroxybenzoate as the most promising candidate. The ligand maintained a good conformational and thermodynamic stability in complex with the enzymes throughout the trajectories of 100 ns molecular dynamics, indicated by RMSD, RMSF and radius of gyration plots. Its binding free energy, MM-GBSA was recorded as -54.24 and -31.77 kcal/mol against the respective enzyme, while its structure-activity relationships confer high probabilities as active antiviral, anti-inflammatory, antiinfection, antitussive and peroxidase inhibitor. The IBScreen database natural product, STOCK1N-45901 (2,3,4,5,6-pentahydroxyhexyl o-hydroxybenzoate) is thus recommended as a potent inhibitor of dual nsp3 and nsp12 of SARS-CoV-2 for further study. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  18. Ayipo YO, Ahmad I, Alananzeh W, Lawal A, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Nov;41(19):10096-10116.
    PMID: 36476097 DOI: 10.1080/07391102.2022.2153168
    Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
    Matched MeSH terms: Molecular Docking Simulation
  19. Ayipo YO, Alananzeh WA, Ahmad I, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023;41(13):6219-6235.
    PMID: 35881145 DOI: 10.1080/07391102.2022.2104376
    Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural β-carboline alkaloids (NβCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NβCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  20. Ayipo YO, Ahmad I, Chong CF, Zainurin NA, Najib SY, Patel H, et al.
    J Biomol Struct Dyn, 2024;42(2):993-1014.
    PMID: 37021485 DOI: 10.1080/07391102.2023.2198016
    The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links