Displaying publications 81 - 100 of 136 in total

Abstract:
Sort:
  1. Chieng ZH, Mohyaldinn ME, Hassan AM, Bruining H
    Polymers (Basel), 2020 Jun 30;12(7).
    PMID: 32629958 DOI: 10.3390/polym12071470
    In hydraulic fracturing, fracturing fluids are used to create fractures in a hydrocarbon reservoir throughout transported proppant into the fractures. The application of many fields proves that conventional fracturing fluid has the disadvantages of residue(s), which causes serious clogging of the reservoir's formations and, thus, leads to reduce the permeability in these hydrocarbon reservoirs. The development of clean (and cost-effective) fracturing fluid is a main driver of the hydraulic fracturing process. Presently, viscoelastic surfactant (VES)-fluid is one of the most widely used fracturing fluids in the hydraulic fracturing development of unconventional reservoirs, due to its non-residue(s) characteristics. However, conventional single-chain VES-fluid has a low temperature and shear resistance. In this study, two modified VES-fluid are developed as new thickening fracturing fluids, which consist of more single-chain coupled by hydrotropes (i.e., ionic organic salts) through non-covalent interaction. This new development is achieved by the formulation of mixing long chain cationic surfactant cetyltrimethylammonium bromide (CTAB) with organic acids, which are citric acid (CA) and maleic acid (MA) at a molar ratio of (3:1) and (2:1), respectively. As an innovative approach CTAB and CA are combined to obtain a solution (i.e., CTAB-based VES-fluid) with optimal properties for fracturing and this behaviour of the CTAB-based VES-fluid is experimentally corroborated. A rheometer was used to evaluate the visco-elasticity and shear rate & temperature resistance, while sand-carrying suspension capability was investigated by measuring the settling velocity of the transported proppant in the fluid. Moreover, the gel breaking capability was investigated by determining the viscosity of broken VES-fluid after mixing with ethanol, and the degree of core damage (i.e., permeability performance) caused by VES-fluid was evaluated while using core-flooding test. The experimental results show that, at pH-value ( 6.17 ), 30 (mM) VES-fluid (i.e., CTAB-CA) possesses the highest visco-elasticity as the apparent viscosity at zero shear-rate reached nearly to 10 6 (mPa·s). Moreover, the apparent viscosity of the 30 (mM) CTAB-CA VES-fluid remains 60 (mPa·s) at (90 ∘ C) and 170 (s - 1 ) after shearing for 2-h, indicating that CTAB-CA fluid has excellent temperature and shear resistance. Furthermore, excellent sand suspension and gel breaking ability of 30 (mM) CTAB-CA VES-fluid at 90 ( ∘ C) was shown; as the sand suspension velocity is 1.67 (mm/s) and complete gel breaking was achieved within 2 h after mixing with the ethanol at the ratio of 10:1. The core flooding experiments indicate that the core damage rate caused by the CTAB-CA VES-fluid is ( 7.99 % ), which indicate that it does not cause much damage. Based on the experimental results, it is expected that CTAB-CA VES-fluid under high-temperature will make the proposed new VES-fluid an attractive thickening fracturing fluid.
    Matched MeSH terms: Organic Chemicals
  2. Selaman, R., Newati Wid
    MyJurnal
    Anaerobic digestion is a process by which microorganisms break down biodegradable material in the absence of oxygen. The process involves hydrolysis, acidogenesis and methanogenesis stages. Anaerobic digestion of food waste has been widely investigated for biogas recovery but limited study was performed on phosphorus recovery, which is reported depleting. Food waste is produced every day and dumped on landfill for final disposal which may lead to environmental issues such as odour problems and greenhouse gases release, due to decomposing of food waste, hence impacts global climate change. In anaerobic digestion pH is a very crucial parameter in an attempt to recover phosphorus as it highly influences the production of organic acids during acidogenesis.
    Matched MeSH terms: Organic Chemicals
  3. Salmiah Jamal Mat Rosid, Susilawati Toemen, Wan Azelee Wan Abu Bakar, Sarina Mat Rosid, Wan Nazwanie Wan Abdullah, Siti Maisarah Aziz
    MyJurnal
    Lanthanide element in the methanation reaction gives an excellent catalytic performance at low reaction temperature. Praseodymium is one of lanthanide element and was chosen due to its properties which are thermally stable and provide excess of oxygen in the oxide lattice. Therefore, a catalyst of Ru/Mn/Pr (5:30:65)/Al2O3 (RMP, 5:30:65/Al2O3) was prepared via wetness impregnation method and the effect of calcination temperature on the catalyst performance was investigated using FTIR analysis. The RMP/Al2O3 catalyst calcined at 800 o C was chosen as an excel catalyst with CO2 conversion of 96.9% and CH4 formation of 45.1% at 350 o C reaction temperature. From the EDX mapping, it can be observed that the distribution of all element is homogeneous at 800 o C and 900 o C except Ru, O and Al at 1000 o C calcination temperature. The image from FESEM also shows the presence of some crystal shape on the catalyst surface. From the FTIR analysis, the peak stretching and bending mode of O-H bond decreased when the calcination temperature increased.
    Matched MeSH terms: Organic Chemicals
  4. Noor Hidayah, M.S., Tuan Zainazor, C., Pui, C.F., Noorlis, A., Noor Eliza, M.R., Naziehah, M.D., et al.
    MyJurnal
    Several Norovirus cases due to consumption of green onions have been reported during recent years but reports on red onions are not found. Onions are one of the major tastes in Malaysian food which are sometimes consuming raw especially the green onion. Viral contamination in onions can occur due to planting condition and not properly prepared food. This situation can pose the human health risk. A method was developed to detect the Norovirus that might present on different type of onions. In this study, 60 samples were collected from local market. Elution by Tryptose Phosphate Glycine broth and concentration steps using negatively charge filter were applied to enhance the detection of virus in food due to low copies of virus on food surface. The viral RNA was extracted using Qiagen Rneasy Mini kit before further detection using One-step RT-PCR. The total incidence of Norovirus in green onion and red onion was 13.33% (4/30) and 3.33 % (1/30) respectively. This is the first report of the detection of Norovirus in red and green onions in Malaysia. Based on the results, it is concluded that this method is reliable to detect Norovirus on onions and vegetables surface and hence can be applied in the laboratories for routine or food borne outbreak investigation.
    Matched MeSH terms: Organic Chemicals
  5. Lim MP, Firdaus-Raih M, Nathan S
    Front Microbiol, 2016;7:1436.
    PMID: 27672387 DOI: 10.3389/fmicb.2016.01436
    Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.
    Matched MeSH terms: Organic Chemicals
  6. Lee ZS, Chin SY, Cheng CK
    Heliyon, 2019 Jun;5(6):e01792.
    PMID: 31245637 DOI: 10.1016/j.heliyon.2019.e01792
    This study evaluates the effects of subcritical hydrothermal treatment on palm oil mill effluent (POME) and its concomitant formations of solid hydrochar, liquid product and gaseous product. The reactions were carried out at temperatures ranged 493 K-533 K for 2 h. The highest reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 58.8% and 62.5%, respectively, at 533 K. In addition, the removal of total suspended solids (TSS) achieved up to 99%, with the pH of POME reaching 6 from the initial pH 4. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis showed that the fresh POME contained n-Hexadecanoic acid as the dominant component, which gradually reduced in the liquid product in the reaction with increased temperature, in addition to the attenuation of carboxyl compounds and elevation of phenolic components. The gaseous products contained CO2, CO, H2, and C3 - C6 hydrocarbons. Traces of CH4 were only found at 533 K. CO2 is the dominant species, where the highest of 3.99 vol% per 500 mL working volume of POME recorded at 533 K. The solid hydrochars showed negligible morphological changes across the reaction temperature. The O/C atomic ratio of the hydrochar range from 0.157 to 0.379, while the H/C atomic ratio was in the range from 0.930 to 1.506. With the increase of treatment temperature, the higher heating value (HHV) of the hydrochar improved from 24.624 to 27.513 MJ kg-1. The characteristics of hydrochar make it a fuel source with immense potential. POME decomposed into water-soluble compounds, followed by deoxygenation (dehydration and decarboxylation) in producing hydrochar with lower oxygen content and higher aromatic compounds in the liquid product. Little gaseous hydrocarbons were produced due to subcritical hydrothermal gasification at low temperature.
    Matched MeSH terms: Organic Chemicals
  7. Hassan MH, Hassan WMNW, Zaini RHM, Shukeri WFWM, Abidin HZ, Eu CS
    Malays J Med Sci, 2017 Oct;24(5):83-93.
    PMID: 29386975 MyJurnal DOI: 10.21315/mjms2017.24.5.9
    Background: Normal saline (NS) is a common fluid of choice in neurosurgery and neuro-intensive care unit (ICU), but it does not contain other electrolytes and has the potential to cause hyperchloremic metabolic acidosis with prolonged infusion. These problems may be reduced with the availability of balanced fluid (BF), which becomes a more physiological isotonic solution with the presence of complete electrolyte content. This study aimed to compare the changes in electrolytes and acid-base between NS and BF (Sterofundin® ISO) therapy for post-operative severe traumatic brain injury (TBI) patients in neuro-ICU.

    Methods: Sixty-six severe TBI patients who required emergency craniotomy or craniectomy and were planned for post-operative ventilation were randomised into NS (n = 33) and BF therapy groups (n = 33). The calculation of maintenance fluid given was based on the Holliday-Segar method. The electrolytes and acid-base parameters were assessed at an 8 h interval for 24 h. The data were analysed using repeated measures ANOVA.

    Results: The NS group showed a significant lower base excess (-3.20 versus -1.35, P = 0.049), lower bicarbonate level (22.03 versus 23.48 mmol/L, P = 0.031), and more hyperchloremia (115.12 versus 111.74 mmol/L, P < 0.001) and hypokalemia (3.36 versus 3.70 mmol/L, P < 0.001) than the BF group at 24 h of therapy. The BF group showed a significantly higher level of calcium (1.97 versus 1.79 mmol/L, P = 0.003) and magnesium (0.94 versus 0.80 mmol/L, P < 0.001) than the NS group at 24 h of fluid therapy. No significant differences were found in pH, pCO2, lactate, and sodium level.

    Conclusion: BF therapy showed better effects in maintaining higher electrolyte parameters and reducing the trend toward hyperchloremic metabolic acidosis than the NS therapy during prolonged fluid therapy for postoperative TBI patients.

    Matched MeSH terms: Organic Chemicals
  8. Talib AT, Mokhtar MN, Baharuddin AS, Sulaiman A
    Bioresour Technol, 2014 Oct;169:428-38.
    PMID: 25079208 DOI: 10.1016/j.biortech.2014.07.033
    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.
    Matched MeSH terms: Organic Chemicals/isolation & purification
  9. Wahab RA, Basri M, Rahman RN, Salleh AB, Rahman MB, Chor LT
    Appl Biochem Biotechnol, 2012 Jun;167(3):612-20.
    PMID: 22581079 DOI: 10.1007/s12010-012-9728-2
    In silico and experimental investigations were conducted to explore the effects of substituting hydrophobic residues, Val, Met, Leu, Ile, Trp, and Phe into Gln 114 of T1 lipase. The in silico investigations accurately predicted the enzymatic characteristics of the mutants in the experimental studies and provided rationalization for some of the experimental observations. Substitution with Leu successfully improved the conformational stability and enzymatic characteristics of T1 lipase. However, replacement of Gln114 with Trp negatively affected T1 lipase and resulted in the largest disruption of protein stability, diminished lipase activity and inferior enzymatic characteristics. These results suggested that the substitution of a larger residue in a densely packed area of the protein core can have considerable effects on the structure and function of an enzyme. This is especially true when the residue is next to the catalytic serine as demonstrated with the Phe and Trp mutation.
    Matched MeSH terms: Organic Chemicals/chemistry
  10. Hassan SA, Mijin S, Yusoff UK, Ding P, Wahab PE
    Molecules, 2012 Jun 28;17(7):7843-53.
    PMID: 22743588 DOI: 10.3390/molecules17077843
    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.
    Matched MeSH terms: Organic Chemicals/pharmacology*
  11. Ude CC, Shamsul BS, Ng MH, Chen HC, Norhamdan MY, Aminuddin BS, et al.
    Tissue Cell, 2012 Jun;44(3):156-63.
    PMID: 22402173 DOI: 10.1016/j.tice.2012.02.001
    Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7±0.4 and 14.6±0.5; unlabeled samples had 13.8±0.5 and 15.4±0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0±5.8, 60.0±2.9 and 95.0±2.9%, while ADSCs had 92.0±1.2, 95.0±1.2 and 98.0±1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0±1.2% to 90.0±0.6% and ADSCs from 94.0±1.2% to 52.0±1.2% (p<0.05) after 24h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p<0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days.
    Matched MeSH terms: Organic Chemicals/chemistry*
  12. Abioye OP, Agamuthu P, Abdul Aziz AR
    Biodegradation, 2012 Apr;23(2):277-86.
    PMID: 21870160 DOI: 10.1007/s10532-011-9506-9
    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
    Matched MeSH terms: Organic Chemicals/analysis
  13. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Organic Chemicals/chemistry
  14. Hairul Aini H, Omar AR, Hair-Bejo M, Aini I
    Microbiol Res, 2008;163(5):556-63.
    PMID: 16971101
    The current available molecular method to detect infectious bursal disease virus (IBDV) is by reverse transcriptase-polymerase chain reaction (RT-PCR). However, the conventional PCR is time consuming, prone to error and less sensitive. In this study, the performances of Sybr Green I real-time PCR, enzyme-linked immunosorbent assay (ELISA) and conventional agarose detection methods in detecting specific IBDV PCR products were compared. We found the real-time PCR was at least 10 times more sensitive than ELISA detection method with a detection limit of 0.25pg. The latter was also at least 10 times more sensitive than agarose gel electrophoresis detection method. The developed assay detects both very virulent and vaccine strains of IBDV but not other RNA viruses such as Newcastle disease virus and infectious bronchitis virus. Hence, Sybr Green I-based real-time PCR is a highly sensitive assay for the detection of IBDV.
    Matched MeSH terms: Organic Chemicals/analysis*
  15. Soh SC, Abdullah MP
    Environ Monit Assess, 2007 Jan;124(1-3):39-50.
    PMID: 16967208
    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.
    Matched MeSH terms: Organic Chemicals/analysis*
  16. Ong YH, Chua AS, Lee BP, Ngoh GC
    Water Sci Technol, 2013;67(2):340-6.
    PMID: 23168633 DOI: 10.2166/wst.2012.552
    To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate.
    Matched MeSH terms: Organic Chemicals/analysis
  17. Rahman RN, Geok LP, Basri M, Salleh AB
    Bioresour Technol, 2005 Mar;96(4):429-36.
    PMID: 15491823
    The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.
    Matched MeSH terms: Organic Chemicals/chemistry*
  18. Hosseini SM, Abdul Aziz H
    Bioresour Technol, 2013 Apr;133:240-7.
    PMID: 23428821 DOI: 10.1016/j.biortech.2013.01.098
    The effects of thermochemical pretreatment and continuous thermophilic conditions on the composting of a mixture of rice straw residue and cattle manure were investigated using a laboratory-scale composting reactor. Results indicate that the composting period of rice straw can be shortened to less than 10 days by applying alkali pre-treatment and continuous thermophilic composting conditions. The parameters obtained on day 9 of this study are similar to the criteria level published by the Canadian Council of Ministers of the Environment. The moisture content, organic matter reduction, pH level, electrical conductivity, total organic carbon reduction, soluble chemical oxygen demand reduction, total Kjeldahl nitrogen, carbon-to-nitrogen ratio, and germination index were 62.07%, 16.99%, 7.30%, 1058 μS/cm, 17.00%, 83.43%, 2.06%, 16.75%, and 90.33%, respectively. The results of this study suggest that the application of chemical-biological integrated processes under thermophilic conditions is a novel method for the rapid degradation and maturation of rice straw residue.
    Matched MeSH terms: Organic Chemicals/analysis
  19. Hafizah M, Liu CY, Ooi JS
    J Neurosurg Sci, 2017 Jun;61(3):263-270.
    PMID: 25854455 DOI: 10.23736/S0390-5616.16.03221-5
    BACKGROUND: This prospective, randomized controlled study compared the changes in acid-base balance and serum electrolytes with the use of intravenous balanced and non-balanced crystalloid solutions intraoperatively during elective neurosurgery.

    METHODS: Thirty consented adult patients who underwent craniotomy were randomly allocated into two groups of 15 patients each. The non-balanced group received 0.9% normal saline while the balanced group received Sterofundin®ISO as the intraoperative fluid for maintenance. Biochemical indices for acid-base balance and serum electrolytes were analyzed periodically.

    RESULTS: In the non-balanced group, significant changes were noted in the pH, base excess and bicarbonate values over time compared to its respective baseline values (P<0.01). Four patients (27.7%) also developed a pH<7.35 and 5 patients (33.3%) developed marked acidosis with base excess

    Matched MeSH terms: Organic Chemicals/therapeutic use
  20. Asing, Ali E, Hamid SB, Hossain M, Ahamad MN, Hossain SM, et al.
    PMID: 27643977
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
    Matched MeSH terms: Organic Chemicals/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links