Displaying publications 81 - 100 of 113 in total

Abstract:
Sort:
  1. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    Eur J Nutr, 2013 Mar;52(2):443-56.
    PMID: 22527284 DOI: 10.1007/s00394-012-0346-0
    BACKGROUND: Water-soluble phenolics from the oil palm possess significant biological properties.

    PURPOSE: In this study, we aimed to discover the role of oil palm phenolics (OPP) in influencing the gene expression changes caused by an atherogenic diet in mice.

    METHODS: We fed mice with either a low-fat normal diet (14.6 % kcal/kcal fat) with distilled water, or a high-fat atherogenic diet (40.5 % kcal/kcal fat) containing cholesterol. The latter group was given either distilled water or OPP. We harvested major organs such as livers, spleens and hearts for microarray gene expression profiling analysis. We determined how OPP changed the gene expression profiles caused by the atherogenic diet. In addition to gene expression studies, we carried out physiological observations, blood hematology as well as clinical biochemistry, cytokine profiling and antioxidant assays on their blood sera.

    RESULTS: Using Illumina microarrays, we found that the atherogenic diet caused oxidative stress, inflammation and increased turnover of metabolites and cells in the liver, spleen and heart. In contrast, OPP showed signs of attenuating these effects. The extract increased unfolded protein response in the liver, attenuated antigen presentation and processing in the spleen and up-regulated antioxidant genes in the heart. Real-time quantitative reverse transcription-polymerase chain reaction validated the microarray gene expression fold changes observed. Serum cytokine profiling showed that OPP attenuated inflammation by modulating the Th1/Th2 axis toward the latter. OPP also increased serum antioxidant activity to normal levels.

    CONCLUSION: This study suggests that OPP may possibly attenuate atherosclerosis and other forms of cardiovascular disease.

    Matched MeSH terms: Phenols/pharmacology*
  2. Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, et al.
    Ultrason Sonochem, 2023 Dec;101:106702.
    PMID: 38041881 DOI: 10.1016/j.ultsonch.2023.106702
    Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
    Matched MeSH terms: Phenols/pharmacology
  3. Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS
    J Sci Food Agric, 2015 Oct;95(13):2763-71.
    PMID: 25582089 DOI: 10.1002/jsfa.7078
    BACKGROUND: Petroselinum crispum (English parsley) is a common herb of the Apiaceae family that is cultivated throughout the world and is widely used as a seasoning condiment. Studies have shown its potential as a medicinal herb. In this study, P. crispum leaf and stem extracts were evaluated for their antioxidant properties, protection against DNA damage in normal 3T3-L1 cells, and the inhibition of proliferation and migration of the MCF-7 cells.

    RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis.

    CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.

    Matched MeSH terms: Phenols/pharmacology*
  4. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z
    Molecules, 2019 Jul 04;24(13).
    PMID: 31277371 DOI: 10.3390/molecules24132449
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains one of the deadliest, infectious diseases worldwide. The detrimental effects caused by the existing anti-TB drugs to TB patients and the emergence of resistance strains of M. tuberculosis has driven efforts from natural products researchers around the globe in discovering novel anti-TB drugs that are more efficacious and with less side effects. There were eleven main review publications that focused on natural products with anti-TB potentials. However, none of them specifically emphasized antimycobacterial phenolic compounds. Thus, the current review's main objective is to highlight and summarize phenolic compounds found active against mycobacteria from 2000 to 2017. Based on the past studies in the electronic databases, the present review also focuses on several test organisms used in TB researches and their different distinct properties, a few types of in vitro TB bioassay and comparison between their strengths and drawbacks, different methods of extraction, fractionation and isolation, ways of characterizing and identifying isolated compounds and the mechanism of actions of anti-TB phenolic compounds as reported in the literature.
    Matched MeSH terms: Phenols/pharmacology
  5. Gođevac D, Stanković J, Novaković M, Anđelković B, Dajić-Stevanović Z, Petrović M, et al.
    J Nat Prod, 2015 Sep 25;78(9):2198-204.
    PMID: 26290401 DOI: 10.1021/acs.jnatprod.5b00273
    From the aerial parts of Atriplex littoralis, three new flavonoid glycosides named atriplexins I-III (1-3), a known flavonoid glycoside, spinacetin 3-O-β-d-glucopyranoside (4), arbutin (5), and 4-hydroxybenzyl-β-d-glucopyranoside (6) were isolated. Their structures were elucidated on the basis of detailed spectroscopic analysis, including 1D and 2D NMR (COSY, NOESY, TOCSY, HSQC, HMBC) and HRESITOF MS data. The compounds were tested for in vitro protective effects on chromosome aberrations in peripheral human lymphocytes using a cytochalasin-B-blocked micronucleus (MN) assay in a concentration range of 0.8-7.4 μM of final culture solution. Chromosomal damage was induced by 2 Gy of γ-radiation on binucleated human lymphocytes, and the effects of the compounds were tested 2 to 19 h after irradiation. The frequency of micronuclei (MNi) was scored in binucleated cells, and the nuclear proliferation index was calculated. The highest prevention of in vitro biochemical and cytogenetic damage of human lymphocytes induced by γ-radiation was exhibited by 3 (reduction of MN frequency by 31%), followed by 4 and 6.
    Matched MeSH terms: Phenols/pharmacology*
  6. Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al.
    BMC Complement Altern Med, 2014 Oct 07;14:381.
    PMID: 25292439 DOI: 10.1186/1472-6882-14-381
    BACKGROUND: Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient.

    METHODS: Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength).

    RESULTS: LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent.

    CONCLUSIONS: Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

    Matched MeSH terms: Phenols/pharmacology
  7. Chan EWC, Wong SK, Tangah J, Inoue T, Chan HT
    J Integr Med, 2020 May;18(3):189-195.
    PMID: 32115383 DOI: 10.1016/j.joim.2020.02.006
    Flavonoids are by far the most dominant class of phenolic compounds isolated from Morus alba leaves (MAL). Other classes of compounds are benzofurans, phenolic acids, alkaloids, coumarins, chalcones and stilbenes. Major flavonoids are kuwanons, moracinflavans, moragrols and morkotins. Other major compounds include moracins (benzofurans), caffeoylquinic acids (phenolic acids) and morachalcones (chalcones). Research on the anticancer properties of MAL entailed in vitro and in vivo cytotoxicity of extracts or isolated compounds. Flavonoids, benzofurans, chalcones and alkaloids are classes of compounds from MAL that have been found to be cytotoxic towards human cancer cell lines. Further studies on the phytochemistry and anticancer of MAL are suggested. Sources of information were PubMed, PubMed Central, ScienceDirect, Google, Google Scholar, J-Stage, PubChem and China National Knowledge Infrastructure.
    Matched MeSH terms: Phenols/pharmacology*
  8. Reddy NS, Navanesan S, Sinniah SK, Wahab NA, Sim KS
    BMC Complement Altern Med, 2012 Aug 17;12:128.
    PMID: 22898370 DOI: 10.1186/1472-6882-12-128
    BACKGROUND: The leaves of Leea indica (Vitaceae), commonly known as 'Huo Tong Shu' in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. The current study reports the outcome of antioxidant and cytotoxic investigation of L. indica leaves. To the best of our knowledge, this is the first report of L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) for evaluation of total phenolic content, antioxidant effect and cytotoxic activity against colon cancer cell lines.

    METHODS: In the present study, L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) were firstly prepared prior to phenolic content, antioxidant effect and cytotoxic activity assessment. Folin-Ciocalteau's method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by employing three different established testing systems, such as scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, reducing power assay and SOD (superoxide dismutase) activity assay. The cytotoxic activity of the extracts were evaluated against three colon cancer cell lines with varying molecular characteristics (HT-29, HCT-15 and HCT-116) by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.

    RESULTS: The total phenolic content and antioxidant capabilities differed significantly among the L. indica leaf extracts. A strong correlation between total phenolic content and antioxidant properties was found, indicating that phenolic compounds are the major contributor to the antioxidant properties of these extracts. Among the crude ethanol and its fractionated extracts, fractionated water extract showed significantly the highest total phenolic content and strongest antioxidant effect in all the antioxidant testing systems employed in this study. All the four extracts exert no damage to the selected colon cancer cells.

    CONCLUSIONS: The data obtained in these testing systems clearly establish the antioxidant potency of the fractionated water extract of L. indica leaves. Additional studies should be carried out to isolate and identify the bioactive compounds in the fractionated water extract, in order to provide more convincing evidence.

    Matched MeSH terms: Phenols/pharmacology*
  9. Utami R, Khalid N, Sukari MA, Rahmani M, Abdul AB, Dachriyanus
    Pak J Pharm Sci, 2013 Mar;26(2):245-50.
    PMID: 23455191
    Elaeocarpus floribundus is higher plant that has been used as traditional medicine for treating several diseases. There is no previous report on phytochemicals and bioactivity studies of this species. In this investigation, triterpenoids friedelin, epifriedelanol and β-sitosterol were isolated from its leaves and stem bark. Determination of total phenolic content of methanolic extract of leaves and stem bark was carried out using Folin-Ciocalteu reagent. All extracts and isolated compounds were subjected to screening of antioxidant activity using DPPH free radical scavenging method and cytotoxic activities by MTT assay towards human T4 lymphoblastoid (CEM-SS) and human cervical (HeLa) cancer cells. In the total phenolic content determination, methanolic extract of leaves gave higher value of 503.08±16.71 mg GAE/g DW than stem bark with value of 161.5±24.81 mg GAE/g DW. Polar extracts of leaves and stem bark possessed promising antioxidant activity with methanol extract of stem bark exhibited strongest activity with IC50 value of 7.36±0.01 μg/ml. In the cytotoxic activity assay, only chloroform extract of leaves showed significant activity with IC50 value of 25.6±0.06 μg/ml against CEM-SS cancer cell, while friedelin and epifriedelanol were found to be active against the two cancer cells with IC50 values ranging from 3.54 to 11.45 μg/ml.
    Matched MeSH terms: Phenols/pharmacology*
  10. Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, et al.
    Molecules, 2023 Jul 17;28(14).
    PMID: 37513325 DOI: 10.3390/molecules28145453
    Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
    Matched MeSH terms: Phenols/pharmacology
  11. Lay MM, Karsani SA, Mohajer S, Abd Malek SN
    PMID: 24885709 DOI: 10.1186/1472-6882-14-152
    The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts.
    Matched MeSH terms: Phenols/pharmacology
  12. Abeywardena M, Runnie I, Nizar M, Suhaila M, Head R, Suhaila Momamed
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S467-72.
    PMID: 12492636
    Plant-based polyphenolic compounds have been reported to possess cardiovascular health benefits. Several dietary sources, including herbs and spices, fruits and vegetables, and tea and wine, contain an array of biologically active compounds that have been shown to be effective in retarding oxidation of low-density lipoproteins (LDL) and promoting vascular relaxation. In the present study four different plant sources, both edible and non-edible, were evaluated for potential activity. Organic extracts enriched in polyphenols were prepared from palm fronds (Elaesis guineensis); lemongrass (Cymbopogon citrates); papaya shoots (Carica papaya) and green chilli (Capsicum frutescenes) and tested for their ability to prevent in vitro oxidation of LDL, and for potential vascular relaxation actions. Rings of rat thoracic aorta and isolated perfused mesenteric vascular beds were mounted in organ baths, contracted using a half-maximal dose of noradrenaline and exposed to cumulative additions of test extracts. Palm frond extract resulted in considerable relaxation (>75%) in both preparations and was found to be endothelium-dependent as removal of endothelium or inhibition of endogenous nitric oxide (NO) led to a total loss in relaxant activity. Lemongrass extract caused a greater relaxation action in the mesenteric preparation compared to aortic rings, and appears to be mediated via NO-independent and non-prostanoid mechanisms. Of the extracts tested, palm fronds also demonstrated the highest antioxidant capacity, as determined by the ferric reducing activity/potential assay, and resulted in a significant delay (P < 0.05) in the oxidation of LDL. Collectively, these preliminary findings lend further support to the potential cardiovascular actions of plant polyphenols and also identify oil palm fronds as containing constituents that promote vascular relaxation via endothelium-dependent mechanisms.
    Matched MeSH terms: Phenols/pharmacology*
  13. Jalil AM, Ismail A
    Molecules, 2008 Sep 16;13(9):2190-219.
    PMID: 18830150
    Cocoa and cocoa products have received much attention due to their significant polyphenol contents. Cocoa and cocoa products, namely cocoa liquor, cocoa powder and chocolates (milk and dark chocolates) may present varied polyphenol contents and possess different levels of antioxidant potentials. For the past ten years, at least 28 human studies have been conducted utilizing one of these cocoa products. However, questions arise on which of these products would deliver the best polyphenol contents and antioxidant effects. Moreover, the presence of methylxanthines, peptides, and minerals could synergistically enhance or reduce antioxidant properties of cocoa and cocoa products. To a greater extent, cocoa beans from different countries of origins and the methods of preparation (primary and secondary) could also partially influence the antioxidant polyphenols of cocoa products. Hence, comprehensive studies on the aforementioned factors could provide the understanding of health-promoting activities of cocoa or cocoa products components.
    Matched MeSH terms: Phenols/pharmacology
  14. Abdul Rahim R, Jayusman PA, Muhammad N, Ahmad F, Mokhtar N, Naina Mohamed I, et al.
    Int J Environ Res Public Health, 2019 Dec 06;16(24).
    PMID: 31817699 DOI: 10.3390/ijerph16244962
    Plant-derived polyphenolic compounds have gained widespread recognition as remarkable nutraceuticals for the prevention and treatment of various disorders, such as cardiovascular, neurodegenerative, diabetes, osteoporosis, and neoplastic diseases. Evidence from the epidemiological studies has suggested the association between long-term consumption of diets rich in polyphenols and protection against chronic diseases. Nevertheless, the applications of these phytochemicals are limited due to its low solubility, low bioavailability, instability, and degradability by in vivo and in vitro conditions. Therefore, in recent years, newer approaches have been attempted to solve the restrictions related to their delivery system. Nanoencapsulation of phenolic compounds with biopolymeric nanoparticles could be a promising strategy for protection and effective delivery of phenolics. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers that has attracted considerable attention due to its attractive properties. In this review, our main goal is to cover the relevant recent studies that explore the pharmaceutical significance and therapeutic superiority of the advance delivery systems of phenolic compounds using PLGA-based nanoparticles. A summary of the recent studies implementing encapsulation techniques applied to polyphenolic compounds from plants confirmed that nanoencapsulation with PLGA nanoparticles is a promising approach to potentialize their therapeutic activity.
    Matched MeSH terms: Phenols/pharmacology*
  15. Handayani T, Sakinah S, Nallappan M, Pihie AH
    Anticancer Res, 2007 Mar-Apr;27(2):965-71.
    PMID: 17465228
    Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
    Matched MeSH terms: Phenols/pharmacology*
  16. Ghasemzadeh A, Jaafar HZ, Rahmat A, Ashkani S
    BMC Complement Altern Med, 2015 Sep 23;15:335.
    PMID: 26399961 DOI: 10.1186/s12906-015-0838-6
    BACKGROUND: Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties.

    METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

    RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.

    CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

    Matched MeSH terms: Phenols/pharmacology
  17. Palanisamy UD, Ling LT, Manaharan T, Sivapalan V, Subramaniam T, Helme MH, et al.
    Int J Cosmet Sci, 2011 Jun;33(3):269-75.
    PMID: 21284663 DOI: 10.1111/j.1468-2494.2010.00637.x
    Syzygium aqueum, a species in the Myrtaceae family, commonly called the water jambu is native to Malaysia and Indonesia. It is well documented as a medicinal plant, and various parts of the tree have been used in traditional medicine, for instance as an antibiotic. In this study, we show S. aqueum leaf extracts to have a significant composition of phenolic compounds, protective activity against free radicals as well as low pro-oxidant capability. Its ethanolic extract, in particular, is characterized by its excellent radical scavenging activity of EC(50) of 133 μg mL(-1) 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 65 μg mL(-1) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 71 μg mL(-1) (Galvinoxyl), low pro-oxidant capabilities and a phenolic content of 585-670 mg GAE g(-1) extract. The extract also displayed other activities, deeming it an ideal cosmetic ingredient. A substantial tyrosinase inhibition activity with an IC(50) of about 60 μg mL(-1) was observed. In addition, the extract was also found to have anti-cellulite activity tested for its ability to cause 98% activation of lipolysis of adipocytes (fat cells) at a concentration of 25 μg mL(-1). In addition, the extract was not cytotoxic to Vero cell lines up to a concentration of 600 μg mL(-1). Although various parts of this plant have been used in traditional medicine, this is the first time it has been shown to have cosmeceutical properties. Therefore, the use of this extract, alone or in combination with other active principles, is of interest to the cosmetic industry.
    Matched MeSH terms: Phenols/pharmacology
  18. Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, et al.
    Nutrients, 2023 Jun 22;15(13).
    PMID: 37447162 DOI: 10.3390/nu15132835
    Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
    Matched MeSH terms: Phenols/pharmacology
  19. Iqbal M, Shah MD, Lie CA, San CK
    Mol Cell Biochem, 2010 Aug;341(1-2):271-7.
    PMID: 20376534 DOI: 10.1007/s11010-010-0458-x
    This study was aimed to evaluate the effect of Strobilanthes crispus extract for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H(2)O(2)). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H(2)O(2)-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Incubation of postmitochondrial supernatant and/or calf thymus DNA with H(2)O(2) (40 mM) in the presence of Fe-NTA (0.1 mM) induces lipid peroxidation and DNA damage to about 2.3-fold and 2.9-fold, respectively, as compared to control (P < 0.05). In lipid peroxidation protection studies, S. crispus treatment showed a dose-dependent inhibition (45-53% inhibition, P < 0.05) of Fe-NTA and H(2)O(2) induced lipid peroxidation. Similarly, in DNA damage protection studies, S. crispus treatment also showed a dose-dependent inhibition (18-30% inhibition, P < 0.05) of DNA damage. In addition, the protection was closely related to the content of phenolic compounds as evident by S. crispus extract showing the value of 124.48 mg/g total phenolics expressed as gallic acid equivalent (GAE, mg/g of extract). From these studies, it is concluded that S. crispus inhibits peroxidation of membrane lipids and DNA damage induced by Fe-NTA and H(2)O(2) and possesses the potential to be used to treat or prevent degenerative diseases where oxidative stress is implicated.
    Matched MeSH terms: Phenols/pharmacology
  20. Mohamed M, Sirajudeen K, Swamy M, Yaacob NS, Sulaiman SA
    Afr J Tradit Complement Altern Med, 2009 Oct 15;7(1):59-63.
    PMID: 21304614
    Honey has been used since ancient times for its nutritional as well as curative properties. Tualang honey is collected from wild honey bees' hives on Tualang trees found in the Malaysian rain forest. It has been used traditionally for the treatment of various diseases, where its therapeutic value has partly been related to its antioxidant properties. This study therefore assessed the colour intensity, total phenolic content, antioxidant activity and antiradical activity of gamma irradiated Tualang Honey. The colour intensity at ABS₄₅₀ was 489.5 ± 1.7 mAU, total phenolic content was 251.7 ± 7.9 mg (gallic acid) /Kg honey, total antioxidant activity by FRAP assay was 322.1 ± 9.7 (µM Fe(II)) and the antiradical activity by DPPH assay was 41.30 ± 0.78 (% inhibition). The data confirms that the antioxidant properties of gamma irradiated Tualang honey are similar to other types of honeys reported in the literature.
    Matched MeSH terms: Phenols/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links