Materials and Methods: Three different seed extracts were prepared through Soxhlet extraction method by using n-hexane, chloroform and methanol solvents. Acute toxicity test performed at dose of 400 mg/ kg, 800 mg/kg, 1600 mg/kg and 3200 mg/kg. Two different strengths of seed extracts (minimum therapeutic dose of 500 mg/kg and maximum therapeutic dose of 1000 mg/kg) were given to Wistar rats to measure anti-inflammatory activity through Carrageenan induced paw edema method.
Results: The standard drug diclofenac sodium was (percentage of inhibition of paw edema 29.68%) more effective as compared to test drug. When efficacy of all extracts compared with each other, n-hexane extract showed more anti-inflammatory effect (percentage inhibition of paw edema 22.21%) at maximum effective dose 1000 mg/kg.
Conclusion: Seed extracts of T. ammi showed anti-inflammatory activity by potentiating the neurotransmission of GABA and also by repression glutamate receptor.
METHODS: In the present study, adult rats (2.5 months old) were fed with 2, 4 and 6 mL/kg body weight of fresh leaf extract of CeA for 2, 4 and 6 weeks, respectively. After the treatment period, the rats were killed, brains were removed and hippocampal neurons were impregnated with silver nitrate (Golgi staining). Hippocampal CA3 neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization) and intersections (a measure of dendritic length) were quantified. These data were compared with those of age-matched control rats.
RESULTS: The results showed a significant increase in the dendritic length (intersections) and dendritic branching points along the length of both apical and basal dendrites in rats treated with 6 mL/kg body weight/day of CeA for 6 weeks. However, the rats treated with 2 and 4 mL/kg body weight/day for 2 and 4 weeks did not show any significant change in hippocampal CA3 neuronal dendritic arborization.
CONCLUSION: We conclude that constituents present in Centella asiatica fresh leaf extract has neuronal dendritic growth-stimulating properties.