Displaying publications 81 - 100 of 305 in total

Abstract:
Sort:
  1. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    BMC Genomics, 2011 Aug 25;12:432.
    PMID: 21864415 DOI: 10.1186/1471-2164-12-432
    BACKGROUND: Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models.

    RESULTS: Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653).

    CONCLUSIONS: OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  2. Balachandra D, Ahmad H, Arifin N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2021 Jan;40(1):27-37.
    PMID: 32729057 DOI: 10.1007/s10096-020-03949-x
    Laboratory diagnosis of Strongyloides infections can be grouped into direct and indirect detection methods, and a combination of the two methods is often needed to reach an accurate and timely diagnosis. This review focuses on non-conventional direct detection via molecular and antigen detection assays. Conventional PCR is the most commonly used molecular diagnostic for Strongyloides. Real-time PCR is accurate and highly sensitive for quantitative and qualitative analysis. Meanwhile, PCR-RFLP can efficiently distinguish human and dog isolates of S. stercoralis, S. fuelleborni (from monkey), and S. ratti (from rodent). Loop-mediated isothermal amplification (LAMP) amplifies DNA isothermally with high specificity, efficiency, and rapidity, and has potential for point-of-care (POC) translation. As for antigen detection assay, coproantigen detection ELISAs for strongyloidiasis traditionally relied on raising rabbit polyclonal antibodies against the parasite antigens for use as capture or detection reagents. Subsequently, hybridoma technology using animals has enabled the discovery of monoclonal antibodies specific to Strongyloides antigens and was utilised to develop antigen detection assays. In recent times, phage display technology has facilitated the discovery of scFv antibody against Strongyloides protein that can accelerate the development of such assays. Improvements in both direct detection methods are being made. Strongyloides molecular diagnostics is moving from the detection of a single infection to the simultaneous detection of soil-transmitted helminths. Meanwhile, antigen detection assays can also be multiplexed and aptamers can be used as antigen binders. In the near future, these two direct detection methods may be more widely used as diagnostic tools for strongyloidiasis.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  3. Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, et al.
    Malar J, 2014;13:117.
    PMID: 24670242 DOI: 10.1186/1475-2875-13-117
    Drug resistance in Plasmodium falciparum is a major problem in malaria control especially along the Thai-Myanmar and Thai-Cambodia borders. To date, a few molecular markers have been identified for anti-malarial resistance in P. falciparum, including the P. falciparum chloroquine resistance transporter (pfcrt) and the P. falciparum multidrug resistance 1 (pfmdr1). However no information is available regarding the distribution pattern of these gene polymorphisms in the parasites from the Thai-Malaysia border. This study was conducted to compare the distribution pattern of the pfcrt and pfmdr1 polymorphisms in the parasites from the lower southern provinces, Thai-Malaysia border and the upper southern provinces, Thai-Myanmar border. In addition, in vitro sensitivities of anti-malarial drugs including chloroquine, mefloquine, quinine, and artesunate were determined.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  4. Loganathan K, Moriya S, Parhar IS
    Zoolog Sci, 2019 04 01;36(2):167-171.
    PMID: 31120653 DOI: 10.2108/zs180111
    The two-pore domain potassium ion (K + ) channel-related K + (TREK) channel and melatonin receptors play roles in the regulation of reproduction in zebrafish. Since reproduction is regulated by diurnal rhythms, the TREK family and melatonin receptors may exhibit diurnal rhythms in expression. In this study, we aimed to investigate diurnal variations of the gene expressions of TREK family and melatonin receptors and their associations with kisspeptin and gonadotrophin-releasing hormone (GnRH). Diurnal variations of trek1b, trek2a, trek2b, mt1, mt2, mel1a, kiss2 and gnrh3 expressions were examined by real-time PCR. For reproduction-related genes, kiss2 and gnrh3 exhibited diurnal rhythms. trek2a revealed a diurnal rhythm in the TREK family. mt2 and mel1c exhibited diurnal rhythms in the melatonin receptors. Since Trek2a regulates gnrh3 expression, the diurnal rhythm of gnrh3 expression suggests to be regulated by the diurnal rhythm of trek2a expression.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  5. Eshkoor SA, Ismail P, Rahman SA, Moin S
    Arh Hig Rada Toksikol, 2011 Dec;62(4):291-8.
    PMID: 22202462 DOI: 10.2478/10004-1254-62-2011-2088
    The aim of our study was to see the effects of GSTP1 polymorphism on biomarkers of ageing, including micronuclei (MN), comet tail length, and relative telomere length in automobile repair workers, who are exposed to a broad spectrum of potential mutagens. The analysis was performed on buccal cells collected from occupationally exposed and non-exposed (control) subjects. Samples were analysed using cytogenetic and molecular methods, including restriction fragment length polymorphism (RFLP), MN test, comet assay, and real-time PCR. The results confirmed the DNA damaging effects of substances used in the mechanical workshops, but did not confirm the influence of GSTP1 gene polymorphism on DNA damage. However, further studies on both occupationally exposed and control populations are needed to understand the relationship between GSTP1 polymorphism and genome damage.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  6. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  7. Loke, C.Y., Nur Hidayah, M.S., Mohd Fadhli, M.F., Teo, SK, Nor Hidayah, A.G., Yasmin Anum, M.Y., et al.
    Medicine & Health, 2010;5(1):1-12.
    MyJurnal
    Chlorella vulgaris, a unicellular microalgae, produces many intracellular phytochemicals namely carotenoids, tocopherols, ubiquinone and protein. Skin ageing which is induced by oxidative stress involves decreased extracellular matrix synthesis and increased expression of enzymes that degrade the collagenous matrix. The objective of this study was to determine the effect of C. vulgaris on the expression of genes encoded for collagen (COL) and matrix metalloproteinases (MMPs) which are involved in skin ageing. Human diploid fibroblasts (HDFs) were obtained from circumcision foreskin of 8-12 year-old boys. HDFs were cultured into 3 groups: untreated control cells, cells with stress-induced premature senescence (SIPS; cells were induced with H2O2 at passage 6 for 2 weeks) and SIPS treated with C. vulgaris (prolonged C. vulgaris treatment started at passage 4 and combined treatment with H2O2 at passage 6 for 2 weeks). Senescence-associated ß-galactosidase (SA ß-gal) was determined using senescent cells histochemical staining kit (Sigma, USA). Expression of COLI, COLIII, COLIV, MMPI, MMPII and MMPIII genes was quantitatively analysed with real-time RT-PCR method (iScript™ One Step real-time PCR with SYBR® Green; Biorad). HDFs treated with H2O2 (SIPS) exhibited senescent morphological features of flattening and enlarged with increased expression of SA ß-gal (p
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  8. Rashid SA, Nazakat R, Muhamad Robat R, Ismail R, Suppiah J, Rajendran K, et al.
    Front Public Health, 2023;11:1208348.
    PMID: 37965510 DOI: 10.3389/fpubh.2023.1208348
    Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may transmit through airborne route particularly when the aerosol particles remain in enclosed spaces with inadequate ventilation. There has been no standard recommended method of determining the virus in air due to limitations in pre-analytical and technical aspects. Furthermore, the presence of low virus loads in air samples could result in false negatives. Our study aims to explore the feasibility of detecting SARS-CoV-2 ribonucleic acid (RNA) in air samples using droplet digital polymerase chain reaction (ddPCR). Active and passive air sampling was conducted between December 2021 and February 2022 with the presence of COVID-19 confirmed cases in two hospitals and a quarantine center in Klang Valley, Malaysia. SARS-CoV-2 RNA in air was detected and quantified using ddPCR and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The comparability of two different digital PCR platforms (QX200 and QIAcuity) to RT-PCR were also investigated. Additionally negative staining transmission electron microscopy was performed to visualize virus ultrastructure. Detection rates of SARS-CoV-2 in air samples using ddPCR were higher compared to RT-PCR, which were 15.2% (22/145) and 3.4% (5/145), respectively. The sensitivity and specificity of ddPCR was 100 and 87%, respectively. After excluding 17 negative samples (50%) by both QX200 and QIAcuity, 15% samples (5/34) were found to be positive both ddPCR and dPCR. There were 23.5% (8/34) samples that were detected positive by ddPCR but negative by dPCR. In contrast, there were 11.7% (4/34) samples that were detected positive by dPCR but negative by ddPCR. The SARS-CoV-2 detection method by ddPCR is precise and has a high sensitivity for viral RNA detection. It could provide advances in determining low viral titter in air samples to reduce false negative reports, which could complement detection by RT-PCR.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods
  9. Mohd Ali MR, Lih Huey L, Foo PC, Goay YX, Ismail AS, Mustaffa KMF, et al.
    Biomed Res Int, 2019;2019:9451791.
    PMID: 31355287 DOI: 10.1155/2019/9451791
    Melioidosis and leptospirosis, caused by two different bacteria, Burkholderia pseudomallei and Leptospira spp., are potentially fatal infections that share a very similar spectrum of clinical features and cause significant mortality and morbidity in humans and livestock. Early detection is important for better clinical consequences. To our knowledge, there is no diagnostic tool available to simultaneously detect and differentiate melioidosis and leptospirosis in humans and animals. In this study, we described a duplex TaqMan probe-based qPCR for the detection of B. pseudomallei and Leptospira spp. DNA. The performance of the assay was evaluated on 20 B. pseudomallei isolates, 23 Leptospira strains, and 39 other microorganisms, as well as two sets of serially diluted reference strains. The duplex qPCR assay was able to detect 0.02 pg (~ 4 copies) Leptospira spp. DNA and 0.2 pg (~ 25.6 copies) B. pseudomallei DNA. No undesired amplification was observed in other microorganisms. In conclusion, the duplex qPCR assay was sensitive and specific for the detection of B. pseudomallei & Leptospira spp. DNA and is suitable for further analytical and clinical evaluation.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction*
  10. Asing, Ali E, Hamid SB, Hossain M, Ahamad MN, Hossain SM, et al.
    PMID: 27643977
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction*
  11. Liam CK, Wong CK, Tan JL
    J Thorac Oncol, 2014 Sep;9(9):e71-2.
    PMID: 25122442 DOI: 10.1097/JTO.0000000000000261
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  12. Manisya Zauri Abdul Wahid, Tengku Rogayah T. Abd. Rashid, Hariyati Md. Ali, Hamadah Mohd Shafiff, Mohd. Shamsul Samsuddin, Syarifah Nur Aisyatun Syed Mohd Salleh, et al.
    MyJurnal
    Introduction:Echoviruses are Enteroviruses (HEVs) that infect millions of people annually worldwide, primarily paediatrics. These viruses are frequently associated with outbreaks and sporadic cases of viral meningitis, enceph-alitis, paralysis, myocarditis, severe systemic infections; and hand-foot-mouth disease. This study is a retrospective study to identify Echovirus serotypes circulating in Malaysia from January 2014 to June 2019, and their roles in outbreak prediction. This study investigated the Echovirus serotypes circulating in Malaysia from January 2014 to June 2019. Methods: A total of 13,855 inpatient samples consisting respiratory secretion, stool, tissue and body fluid from around the country were received by the Virology Unit, Institute for Medical Research between January 2014 and June 2019. The presence of HEV’s RNA was detected by qPCR. The identified positive sample was further isolated by cell culture and identified by Immunofluorescence Assay (IFA). The IFA positive samples were subjected to amplification of partial VP4 gene by RT-PCR, and proceeded to Sanger sequencing for phylogenetic analysis by using ChromasPro and MEGA Software. The sequence generated were analysed by BLAST to confirm the sequence serotypes generated. Results: Echovirus genome was detected in 0.35% (37/10,681) of the patients. The circulating Echovirus subtypes in Malaysia between January 2014 and June 2019 were Echo-11 (43.2%; 16/37), followed by Echo-6 (16.2%; 6/37); 8.1% (3/37) of Echo-7 and Echo-13, respectively. Meanwhile, other types of Echoviruses (24.3%; 9/37) such as Echo 3-5, Echo-14, Echo-16, Echo-18, Echo-25 and Echo-30 were also detected in this study. Conclusion: In this study, it has been found that Echovirus 11 serotype is the most predominant Echovirus serotype circulating in Malaysia between January 2014 and June 2019. It has been reported to cause severe diseases, such as aseptic meningitis. Therefore, the identification of circulating serotypes of Echovirus is critical to predict the Echovi-rus outbreak and to reduce the risk of developing severe disease in Malaysia.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  13. Wong GR, Mazumdar P, Lau SE, Harikrishna JA
    J Plant Physiol, 2018 Dec;231:219-233.
    PMID: 30292098 DOI: 10.1016/j.jplph.2018.09.018
    Genetic improvement is an important approach for crop improvement towards yield stability in stress-prone areas. Functional analysis of candidate stress response genes can provide key information to allow the selection and modification of improved crop varieties. In this study, the constitutive expression of a banana cDNA, MaRHD3 in Arabidopsis improved the ability of transgenic lines to adapt to drought conditions. Transgenic Arabidopsis plants expressing MaRHD3 had roots with enhanced branching and more root hairs when challenged with drought stress. The MaRHD3 plants had higher biomass accumulation, higher relative water content, higher chlorophyll content and an increase in activity of reactive oxygen species (ROS) scavenging enzymes; SOD, CAT, GR, POD and APX with reduced water loss rates compared to control plants. The analysis of oxidative damage indicated lower cell membrane damage in transgenic lines compared to control plants. These findings, together with data from higher expression of ABF-3 and higher ABA content of drought-stressed transgenic MaRHD3 expressing plants, support the involvement of the ABA signal pathway and ROS scavenging enzyme systems in MaRHD3 mediated drought tolerance.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  14. Yamin, S., Shuhaimi, M., Arbakariya, A., Khalilah, A. K., Anas, O., Yazid, A. M., et al.
    MyJurnal
    The use of component from Ganoderma lucidum as prebiotic source is interesting as the G. lucidum itself was known for more than a decade in the traditional Chinese medicine. In this work, Ganoderma lucidum crude polysaccharides (GLCP) and Polysaccharide-fraction number 2 (PF-2) were used as carbon sources in the fermentation with Bifidobacterium sp. The results showed the potential of prebiotic effect of the G. lucidum extract in batch-culture fermentation based on increment in the growth of bacteria used (0.4 – 1.5 log10 CFU/mL) after 18h fermentation. Fermentation was further done using faecal materials as bacterial inocula and bacterial growth changes were examined using real-time PCR. The results showed the ability of GLCP and PF-2 to support the growth of Bifidobacterium genus with 0.3 and 0.7 log10 cells/ml increased, respectively. Interestingly, Lactobacillus which is known as beneficial bacterial genus also showed growth increment with 0.7 and 1 log10 cells/ml increased. The competition for carbon sources thus inhibits the growth of potentially harmful genus, Salmonella (0.3 and 0.5 log10 cells/ml) in comparison to the control.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  15. Sowndhararajan K, Hong S, Jhoo JW, Kim S, Chin NL
    Saudi J Biol Sci, 2015 Nov;22(6):685-91.
    PMID: 26586994 DOI: 10.1016/j.sjbs.2015.03.010
    Acacia species are multipurpose trees, widely used in the traditional systems of medicine to treat various ailments. The major objective of the present study was to determine the gene expression of enzymatic antioxidants by acetone extract from the stem bark of three Acacia species (Acacia dealbata, Acacia ferruginea and Acacia leucophloea) in hydrogen peroxide (H2O2)-induced human hepatoma (HepG2) cells. The expression of antioxidant enzymes such as superoxide dismutase containing copper-zinc (CuZnSOD)/manganese (MnSOD), catalase (CAT) and glutathione peroxidase (GPx) in HepG2 cells was evaluated by real-time PCR. The results of antioxidant enzyme expression in real-time PCR study revealed that the H2O2 (200 μM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells pre-treated with acetone extracts of all the three Acacia species significantly (P > 0.05) up-regulated the expression of antioxidant enzymes in a concentration dependent manner (25, 50 and 75 μg/mL). In conclusion, the findings of our study demonstrated that the acetone extract of Acacia species effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  16. Alazzawi MMJ, Husein A, Alam MK, Hassan R, Shaari R, Azlina A, et al.
    Prog Orthod, 2018 Apr 16;19(1):10.
    PMID: 29658096 DOI: 10.1186/s40510-018-0208-2
    BACKGROUND: Quality bone regeneration, which leads to the improvement of bone remodeling, is essential for orthodontic treatment. In order to improve bone regeneration and increase the amount of tooth movement, different techniques have been implemented. The object of this study is to compare the effects of low-level laser therapy (LLLT), low-intensity pulsed ultrasound (LIPUS), and their combination on bone remodeling during orthodontic tooth movement.

    METHODS: Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2.

    RESULTS: The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest.

    CONCLUSION: These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  17. Pulikkotil SJ, Toh CG, Mohandas K, Leong K
    Aust Dent J, 2016 Dec;61(4):440-445.
    PMID: 26780271 DOI: 10.1111/adj.12409
    BACKGROUND: A randomized split-mouth controlled clinical trial was conducted to evaluate the efficacy of photodynamic therapy (PDT) in reducing Aggregatibacter actinomycetemcomitans (Aa) in periodontitis patients.

    METHODS: Twenty patients with periodontitis were recruited for the trial. Following random allocation of either quadrants of the selected jaw to test or control treatment, conventional non-surgical periodontal therapy (NSPT) was performed. In addition, the test side received adjunct photodynamic therapy. Probing depth (PD), clinical attachment level, bleeding on probing (BoP) and plaque scores (PS%) were recorded at phase 0 (baseline), phase 1 (immediately after NSPT), phase 2 (7 days following NSPT), phase 3 (1 month following NSPT) and phase 4 (3 months following NSPT). Subgingival plaque samples for quantification of Aa by real-time polymerase chain reaction was performed at phases 0, 1, 2 and 4.

    RESULTS: There was a significant clinical improvement at phases 3 and 4 compared with baseline while BoP reduced significantly only in the test group at phase 4. However, no difference in the quantification of Aa was detected between the groups.

    CONCLUSIONS: Within the limits of the study, PDT adjunct to scaling and root planing does not lead to quantitative reduction of Aa in periodontitis patients.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  18. Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, et al.
    Fish Shellfish Immunol, 2012 Oct;33(4):683-9.
    PMID: 22659618 DOI: 10.1016/j.fsi.2012.05.027
    We studied the effect of two probiotic Bacillus subtilis strains on the growth performance, digestive enzyme activity, immune gene expression and disease resistance of juvenile white shrimp (Litopenaeus vannamei). A mixture of two probiotic strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU g(-1) feed to shrimp for eight weeks. In comparison to untreated control group, final weight, weight gain and digestive enzyme activity were significantly greater in shrimp fed BM5 and BM8 diets. Significant differences for specific growth rate (SGR) and survival were recorded in shrimp fed BM8 diet as compared with the control; however, no significant differences were recorded for food conversion ratio (FCR) among all the experimental groups. Eight weeks after the start of the feeding period, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 63.3%, whereas cumulative mortality of the shrimp that had been given probiotics was 20.0% with BM8 and 33.3% with BM5. Subsequently, real-time PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was significantly up-regulated (P 
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/veterinary
  19. Chia LL, Jantan I, Chua KH, Lam KW, Rullah K, Aluwi MF
    Front Pharmacol, 2016;7:291.
    PMID: 27625609 DOI: 10.3389/fphar.2016.00291
    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  20. Shokryazdan P, Faseleh Jahromi M, Liang JB, Ramasamy K, Sieo CC, Ho YW
    PLoS One, 2017;12(5):e0175959.
    PMID: 28459856 DOI: 10.1371/journal.pone.0175959
    The ban or severe restriction on the use of antibiotics in poultry feeds to promote growth has led to considerable interest to find alternative approaches. Probiotics have been considered as such alternatives. In the present study, the effects of a Lactobacillus mixture composed from three previously isolated Lactobacillus salivarius strains (CI1, CI2 and CI3) from chicken intestines on performance, intestinal health status and serum lipids of broiler chickens has been evaluated. Supplementation of the mixture at a concentration of 0.5 or 1 g kg-1 of diet to broilers for 42 days improved body weight, body weight gain and FCR, reduced total cholesterol, LDL-cholesterol and triglycerides, increased populations of beneficial bacteria such as lactobacilli and bifidobacteria, decreased harmful bacteria such as E. coli and total aerobes, reduced harmful cecal bacterial enzymes such as β-glucosidase and β-glucuronidase, and improved intestinal histomorphology of broilers. Because of its remarkable efficacy on broiler chickens, the L. salivarius mixture could be considered as a good potential probiotic for chickens, and its benefits should be further evaluated on a commercial scale.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links