Displaying publications 81 - 100 of 378 in total

Abstract:
Sort:
  1. Jafari A, Zakaria A, Rizwan Z, Mohd Ghazali MS
    Int J Mol Sci, 2011;12(9):6320-8.
    PMID: 22016661 DOI: 10.3390/ijms12096320
    Thin and transparent films of doped cadmium sulfide (CdS) were obtained on commercial glass substrates by Chemical Bath Deposition (CBD) technique. The films were doped with low concentration of Sn, and annealed in air at 300 °C for 45 min. The morphological characterization of the films with different amounts of dopant was made using SEM and EDAX analysis. Optical properties of the films were evaluated by measuring transmittance using the UV-vis spectrophotometer. A comparison of the results revealed that lower concentration of Sn doping improves transmittance of CdS films and makes them suitable for application as window layer of CdTe/CIGS solar cells.
    Matched MeSH terms: Surface Properties
  2. Baig MR, Ariff FT, Yunus N
    Indian J Dent Res, 2011 Mar-Apr;22(2):210-2.
    PMID: 21891887 DOI: 10.4103/0970-9290.84288
    BACKGROUND: The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin.
    AIM: To investigate the effect of bur preparation on the surface roughness (R a ) of eclipse denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined.
    MATERIALS AND METHODS: Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine.
    RESULTS: One-way ANOVA revealed significant differences (P<0.05) in R a and SBS values for all the groups. Post-hoc Tukey's HSD test showed significant differences (P<0.05) between all the groups in the R a values. For SBS also there were significant differences (P<0.05), except between standard bur and control.
    CONCLUSIONS: 1) There was a statistically significant difference in the R a of Eclipse™ specimens prepared using different carbide burs (P<0.05). 2) There was a statistically significant difference in the relined SBS (P<0.05) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.
    Matched MeSH terms: Surface Properties
  3. Koay GF, Chuah TG, Zainal-Abidin S, Ahmad S, Choong TS
    J Oleo Sci, 2011;60(5):237-65.
    PMID: 21502724
    Hydroxyl fatty acids and their derivatives are of high value due to their wide range of industrial application, including cosmetic, food, personal care and pharmaceutical products. Realizing the importance of hydroxyl fatty acids, and yet due to the absence of the conventional starting raw materials, Malaysia has developed 9,10-dihydroxystearic acid (9,10-DHSA) and its derivatives from locally abundant palm based oils. The aim of this article is to provide a general description of the works that have thus far being done on palm based 9,10-DHSA: starting from its conception and production from commercial grade palm based crude oleic acid via epoxidation and hydrolysis, purification through solvent crystallization and characterization through wet and analytical chemistry, moving on to developmental works done on producing its derivatives through blending, esterification, amidation and polymerization, and completing with applications of 9,10-DHSA and its derivatives, e.g. DHSA-stearates and DHSA-estolides, in commercial products such as soaps, deodorant sticks and shampoos. This article incorporates some of the patent filed technological knowhow on 9,10-DHSA and its derivatives, and will also point out some of the shortcomings in previously published documents and provide some recommendations for future research works in mitigating these shortcomings.
    Matched MeSH terms: Surface Properties
  4. Ebrahimiasl S, Yunus WM, Kassim A, Zainal Z
    Sensors (Basel), 2011;11(10):9207-16.
    PMID: 22163690 DOI: 10.3390/s111009207
    Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.
    Matched MeSH terms: Surface Properties
  5. Nourouzi MM, Chuah TG, Choong TS
    Water Sci Technol, 2011;63(5):984-94.
    PMID: 21411950 DOI: 10.2166/wst.2011.280
    The removal of Reactive Black 5 dye in an aqueous solution by electrocoagulation (EC) as well as addition of flocculant was investigated. The effect of operational parameters, i.e. current density, treatment time, solution conductivity and polymer dosage, was investigated. Two models, namely the artificial neural network (ANN) and the response surface method (RSM), were used to model the effect of independent variables on percentage of dye removal. The findings of this work showed that current density, treatment time and dosage of polymer had the most significant effect on percentage of dye removal (p<0.001). In addition, interaction between time and current density, time and dosage of polymer, current density and dosage of polymer also significantly affected the percentage of dye removal (p=0.034, 0.003 and 0.024, respectively). It was shown that both the ANN and RSM models were able to predict well the experimental results (R(2)>0.8).
    Matched MeSH terms: Surface Properties
  6. Hanafi Ismail, Rohani Abdul Majid, Razaina Mat Taib
    MyJurnal
    Linear density polyethylene (LDPE)/thermoplastic sago starch (TPSS), blended with and without the addition of compatibilizer [Polyethylene-grafted-Maleic Anhydride, (PE-g-MA)] were prepared for soil burial test. The test was conducted in the natural soil environment for 3 and 6 months. Different loading of TPSS (10, 20, 30, 40, and 50 wt. %) were used in this study. After soil burial, the blends were evaluated for their tensile properties and scanning electron microscopy (SEM) to observe the surface morphology properties after the test. For LDPE/TPSS, it was observed that the tensile strength decreased with the increase of soil burial time, as well as Young modulus and elongation at break (EB). The LDPE/TPSS/PE-g-MA also showed the same trend for the tensile properties, but with higher properties as compared to uncompatibilized blends. The tensile properties also decreased with the increase in the TPSS loading for both the LDPE/TPSS and LDPE/TPSS/PE-g-MA. Meanwhile,
    the scanning electron microscopy (SEM) on the blend surfaces after the soil burial test showed that degradability increased with the increase in the exposure time as well as the TPSS loading.
    Matched MeSH terms: Surface Properties
  7. Abdul Wahab Mohammad, Lim YP, Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, Hilal N
    Atomic force microscopy (AFM) has a wide range of applications and is rapidly growing in research and development. This powerful technique has been used to visualize surfaces both in liquid or gas media. It has been considered as an effective tool to investigate the surface structure for its ability to generate high-resolution 3D images at a subnanometer range without sample pretreatment. In this paper, the use of AFM to characterize the membrane roughness is presented for commercial and self-prepared membranes for specific applications. Surface roughness has been regarded as one of the most important surface properties, and has significant effect in membrane permeability and fouling behaviour. Several scan areas were used to compare surface roughness for different membrane samples. Characterization of the surfaces was achieved by measuring the average roughness (Ra) and root mean square roughness (Rrms) of the membrane. AFM image shows that the membrane surface was composed entirely of peaks and valleys. Surface roughness is substantially greater for commercial available hydrophobic membranes, in contrast to self-prepared membranes. This study also shows that foulants deposited on membrane surface would increase the membrane roughness.
    Matched MeSH terms: Surface Properties
  8. Eh AL, Teoh SG
    Ultrason Sonochem, 2012 Jan;19(1):151-9.
    PMID: 21715212 DOI: 10.1016/j.ultsonch.2011.05.019
    Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11±0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81±0.81% with 3.19±0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27±0.52% with β-carotene constituted 1.73±0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.
    Matched MeSH terms: Surface Properties
  9. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J Sci Food Agric, 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Surface Properties
  10. Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R
    Langmuir, 2012 Feb 7;28(5):2395-403.
    PMID: 22168405 DOI: 10.1021/la203736b
    Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D-glucoside (2-HDG) and 2-hexyldecyl β(α)-D-maltoside (2-HDM) based on glucose and maltose, respectively. The self-assembly properties of these glycolipids have been studied, observing the phase behavior under thermotropic and lyotropic conditions. Due to their amphiphilic characteristics, 2-HDG and 2-HDM possess rich phase behavior in dry form and in aqueous dispersions. In the thermotropic study, 2-HDG formed a columnar hexagonal liquid crystalline phase, whereas in a binary aqueous system, 2-HDG formed an inverted hexagonal liquid crystalline phase in equilibrium with excess aqueous solution. Furthermore, aqueous dispersions of the hexagonal liquid crystal could be obtained, dispersions known as hexosomes. On the other hand, 2-HDM formed a lamellar liquid crystalline phase (smectic A) in thermotropic conditions, whereas multilamellar vesicles have been observed in equilibrium with aqueous media. Surprisingly, 2-HDM mixed with sodium dodecyl sulfate or aerosol OT induced the formation of more stable unilamellar vesicles. Thus, the branched-chain glycolipids 2-HDG and 2-HDM not only provided alternative nonionic surfactants with rich phase behavior and versatile nanostructures, but also could be used as new drug carrier systems in the future.
    Matched MeSH terms: Surface Properties
  11. Foo KY, Hameed BH
    Bioresour Technol, 2012 May;112:143-50.
    PMID: 22414577 DOI: 10.1016/j.biortech.2012.01.178
    The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.
    Matched MeSH terms: Surface Properties/drug effects
  12. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    J Dent, 2012 Jun;40(6):467-74.
    PMID: 22366313 DOI: 10.1016/j.jdent.2012.02.009
    The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe.
    Matched MeSH terms: Surface Properties
  13. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jul;116:522-5.
    PMID: 22595094 DOI: 10.1016/j.biortech.2012.03.123
    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.
    Matched MeSH terms: Surface Properties/drug effects
  14. Mahmoudian S, Wahit MU, Imran M, Ismail AF, Balakrishnan H
    J Nanosci Nanotechnol, 2012 Jul;12(7):5233-9.
    PMID: 22966551
    This study presents the preparation of regenerated cellulose (RC)/graphene nanoplatelets (GNPs) nanocomposites via room temperature ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) using solution casting method. The thermal stability, gas permeability, water absorption and mechanical properties of the films were studied. The synthesized nanocomposite films were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The T20 decomposition temperature of regenerated cellulose improved with the addition of graphene nanoplatelets up to 5 wt%. The tensile strength and Young's modulus of RC films improved by 34 and 56%, respectively with the addition of 3 wt% GNPs. The nanocomposite films exhibited improved oxygen and carbon dioxide gas barrier properties and water absorption resistance compared to RC. XRD and SEM results showed good interaction between RC and GNPs and well dispersion of graphene nanoplatelets in regenerated cellulose. The FTIR spectra showed that the addition of GNPs in RC did not result in any noticeable change in its chemical structure.
    Matched MeSH terms: Surface Properties
  15. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM
    J Mech Behav Biomed Mater, 2012 Aug;12:144-50.
    PMID: 22732480 DOI: 10.1016/j.jmbbm.2012.02.029
    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
    Matched MeSH terms: Surface Properties
  16. Hui YW, Dykes GA
    J Food Prot, 2012 Aug;75(8):1507-11.
    PMID: 22856578 DOI: 10.4315/0362-028X.JFP-12-062
    The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.
    Matched MeSH terms: Surface Properties
  17. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Surface Properties
  18. Yeap SP, Ahmad AL, Ooi BS, Lim J
    Langmuir, 2012 Oct 23;28(42):14878-91.
    PMID: 23025323 DOI: 10.1021/la303169g
    A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.
    Matched MeSH terms: Surface Properties
  19. Abdul Khaliq R, Kafafy R, Salleh HM, Faris WF
    Nanotechnology, 2012 Nov 16;23(45):455106.
    PMID: 23085573 DOI: 10.1088/0957-4484/23/45/455106
    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.
    Matched MeSH terms: Surface Properties
  20. Chai WL, Brook IM, Palmquist A, van Noort R, Moharamzadeh K
    J R Soc Interface, 2012 Dec 7;9(77):3528-38.
    PMID: 22915635 DOI: 10.1098/rsif.2012.0507
    For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant-soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant-soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different.
    Matched MeSH terms: Surface Properties
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links