Displaying publications 81 - 100 of 792 in total

Abstract:
Sort:
  1. Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ
    PMID: 35055505 DOI: 10.3390/ijerph19020674
    Silver nanoparticles are one of the most extensively studied nanomaterials due to their high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents which reduce metal ions into uncharged nanoparticles. However, in the last few decades, several efforts were made to develop green synthesis methods to avoid the use of hazardous materials. The natural biomolecules found in plants such as proteins/enzymes, amino acids, polysaccharides, alkaloids, alcoholic compounds, and vitamins are responsible for the formation of silver nanoparticles. The green synthesis of silver nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. In the present review we describe the green synthesis of nanoparticles using plants, bacteria, and fungi and the role of plant metabolites in the synthesis process. Moreover, the present review also describes some applications of silver nanoparticles in different aspects such as antimicrobial, biomedicine, mosquito control, environment and wastewater treatment, agricultural, food safety, and food packaging.
    Matched MeSH terms: Green Chemistry Technology/methods
  2. Al Shinwan M, Abualigah L, Huy TD, Younes Shdefat A, Altalhi M, Kim C, et al.
    Sensors (Basel), 2022 Jan 04;22(1).
    PMID: 35009891 DOI: 10.3390/s22010349
    Reaching a flat network is the main target of future evolved packet core for the 5G mobile networks. The current 4th generation core network is centralized architecture, including Serving Gateway and Packet-data-network Gateway; both act as mobility and IP anchors. However, this architecture suffers from non-optimal routing and intolerable latency due to many control messages. To overcome these challenges, we propose a partially distributed architecture for 5th generation networks, such that the control plane and data plane are fully decoupled. The proposed architecture is based on including a node Multi-session Gateway to merge the mobility and IP anchor gateway functionality. This work presented a control entity with the full implementation of the control plane to achieve an optimal flat network architecture. The impact of the proposed evolved packet Core structure in attachment, data delivery, and mobility procedures is validated through simulation. Several experiments were carried out by using NS-3 simulation to validate the results of the proposed architecture. The Numerical analysis is evaluated in terms of total transmission delay, inter and intra handover delay, queuing delay, and total attachment time. Simulation results show that the proposed architecture performance-enhanced end-to-end latency over the legacy architecture.
    Matched MeSH terms: Wireless Technology*
  3. Lim T, Frank K, Hadjab B
    J Cosmet Dermatol, 2022 Jan;21(1):207-219.
    PMID: 34255904 DOI: 10.1111/jocd.14342
    Injectable rejuvenation treatments used in Caucasians might not always suit Asians as the visible signs of aging manifest differently, underscoring a need for Asian-specific strategies that correct underlying structural deficiencies and cumulative age-related changes. The presented Target-Specific Sandwich Technique (TSST) aims to simultaneously restore, rejuvenate, and enhance faces through the distribution of minute amounts of different fillers with different rheologies, using a minimal number of entry points in strategic facial areas and different soft tissue layers in Asians. A total of 14 patients underwent the presented TSST and were subsequently assessed for satisfaction with the treatment and the outcome of the treatment. With 3 cc of fillers, patients experienced a rejuvenated appearance with brow support, brow ridge softening, less severe nasolabial folds, and corrected tear trough hollows. Fillers in the lateral canthal and mandibular angles lifted mouth corners, improved submandibular jowls, and defined the lower face. Although the prejowl sulcus received minimal filler, it appeared subtler, relaxed, and had fewer lines visible while smiling. Overall, patients appeared less tense, rejuvenated, and had improved light reflection and firmer skin. These were due to tissues being supported upward and laterally by fillers in areas of bone resorption-induced volume loss.
    Matched MeSH terms: Technology
  4. Shereen MK, Khattak MI, Zubir F, Basit A
    PLoS One, 2022;17(1):e0260407.
    PMID: 35041686 DOI: 10.1371/journal.pone.0260407
    Reconfigurable antennas have received much attention in RF energy harvesting models owing to their selectivity for operating frequency and polarization. The characteristic of having frequency selectivity and polarization selectivity can be termed as frequency diversity and polarization diversity, respectively. This paper investigates a rectenna device with a new proposed topology in order to eliminate coupling between input and output lines and increase the rectification efficiency with the use of single feed hybrid reconfigurable antenna, switch between 28GHz and 38GHz frequency. Moreover, it is designed to charge a rechargeable battery of 1watt(W). The Reconfiguration mechanism is realized by electronically controlling different states of Switches. PIN Diode (as RLC Equivalent circuit) is used as a switch for ON/OFF states. This antenna mainly comprises rectangular shaped patches (28GHz and 38GHz) with Triango-Truncated edge at the corners. Eighteen PIN Diodes are placed symmetrically throughout the antenna presenting as, S1 & S2 for frequency reconfiguration, S3 to S6 & S7 to S10 connects Triango Truncated edge at the corners for polarization reconfiguration, and for radiation pattern reconfiguration at S11 to S14 & S15 to S18 has been used. The proposed antenna model is capable of simultaneously changing, the radiation patterns as clock and anti-clockwise directions at ±90-degree shift in E and H planes, circularly polarized (CP) states among, Linear Polarization (LP), Right Hand Circularly Polarization (RHCP), and Left Hand Circularly Polarization (LHCP). The current design describes using single antenna for energy harvesting and 5G mobile communication application. This would lead to higher output currents, leading to the ability to efficiently charge a wide variety of batteries. A fully functional prototype has been designed, fabricated and its compound reconfiguration characteristics have been validated for simulated and measured results. For validation of results, the experimental results and the simulation results from the proposed mathematical model were made into comparison, and excellent correlation between the measured and simulated results was obtained.
    Matched MeSH terms: Wireless Technology*
  5. Ghazali SZ, Mohamed Noor NR, Mustaffa KMF
    Prep Biochem Biotechnol, 2022;52(1):99-107.
    PMID: 33890844 DOI: 10.1080/10826068.2021.1913602
    The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.
    Matched MeSH terms: Green Chemistry Technology
  6. Khan ZA, Naz S, Khan R, Teo J, Ghani A, Almaiah MA
    Comput Intell Neurosci, 2022;2022:5112375.
    PMID: 35449734 DOI: 10.1155/2022/5112375
    Data redundancy or fusion is one of the common issues associated with the resource-constrained networks such as Wireless Sensor Networks (WSNs) and Internet of Things (IoTs). To resolve this issue, numerous data aggregation or fusion schemes have been presented in the literature. Generally, it is used to decrease the size of the collected data and, thus, improve the performance of the underlined IoTs in terms of congestion control, data accuracy, and lifetime. However, these approaches do not consider neighborhood information of the devices (cluster head in this case) in the data refinement phase. In this paper, a smart and intelligent neighborhood-enabled data aggregation scheme is presented where every device (cluster head) is bounded to refine the collected data before sending it to the concerned server module. For this purpose, the proposed data aggregation scheme is divided into two phases: (i) identification of neighboring nodes, which is based on the MAC address and location, and (ii) data aggregation using k-mean clustering algorithm and Support Vector Machine (SVM). Furthermore, every CH is smart enough to compare data sets of neighboring nodes only; that is, data of nonneighbor is not compared at all. These algorithms were implemented in Network Simulator 2 (NS-2) and were evaluated in terms of various performance metrics, such as the ratio of data redundancy, lifetime, and energy efficiency. Simulation results have verified that the proposed scheme performance is better than the existing approaches.
    Matched MeSH terms: Wireless Technology*
  7. Sreenath S, Sudhakar K, Yusop AF
    J Environ Manage, 2021 Dec 01;299:113639.
    PMID: 34479146 DOI: 10.1016/j.jenvman.2021.113639
    Sustainability has become a focus area for practitioners and scholars due to the growing socio-economic issues. The sustainability of airport operations is being raised in various international platforms. This paper aims to identify the dimensions of sustainability and evaluate sustainable practices in airports of selected ASEAN countries. The various dimensions associated with the environmental aspect are energy management, emissions management, water and effluents management, solid waste management. It was understood that noise management, employee development, and community investment belong to the social dimension. Similarly, the factors such as economic contribution, passenger experience, airport safety, and security are inclined to economic dimensions of sustainability. It was found that environmentally sustainable practices have greater importance than social and economic initiatives in the airport context which provide quantifiable benefits for airports in the long term. Airport operators in South East Asia strived to mitigate carbon emissions, reduce waste and effluents, enhance the economic contribution, satisfy passengers, and meet employee needs. Compared to the total economic and social benefits obtained from these airports, the negative impacts of airport operation (such as noise emission from aircraft) are minimal but significant. The most common sustainable initiatives in airports, such as employee development, energy management, and passenger safety, supported sustainable development goals (SDG) 8, SDG 9, and SDG 11. A weak connection is observed between SDG 14 & SDG 15 and the airport's sustainable practices. The new technological innovations are concentrated in busy and profitable airports. A slow trend towards the adoption of new technologies for sustainable practices is observed in airports. The paper concludes that major airport operators in South-East Asia have effectively responded to the growing sustainability challenges in aviation markets. The sustainable dimensions and practices discussed will be valuable resource for airports striving to achieve sustainability goals.
    Matched MeSH terms: Technology
  8. Devasvaran K, Lim V
    Pharm Biol, 2021 Dec;59(1):494-503.
    PMID: 33905665 DOI: 10.1080/13880209.2021.1910716
    CONTEXT: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the biological industry, pectin has been left behind in synthesising MNPs, for no known reason.

    OBJECTIVE: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs).

    METHODS: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and ResearchGate were systematically searched from the date of their inception until 10th February 2020. Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic reviews.

    RESULTS: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies), non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study).

    CONCLUSIONS: This systematic review demonstrates the current state of the art of Pe-MNPs biological activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understanding of the pharmacological potential of pectin synthesised MNPs.

    Matched MeSH terms: Green Chemistry Technology/methods*
  9. Ahmad MI, Ab Rahim MH, Nordin R, Mohamed F, Abu-Samah A, Abdullah NF
    Sensors (Basel), 2021 Nov 17;21(22).
    PMID: 34833705 DOI: 10.3390/s21227629
    As nuclear technology evolves, and continues to be used in various fields since its discovery less than a century ago, radiation safety has become a major concern to humans and the environment. Radiation monitoring plays a significant role in preventive radiological nuclear detection in nuclear facilities, hospitals, or in any activities associated with radioactive materials by acting as a tool to measure the risk of being exposed to radiation while reaping its benefit. Apart from in occupational settings, radiation monitoring is required in emergency responses to radiation incidents as well as outdoor radiation zones. Several radiation sensors have been developed, ranging from as simple as a Geiger-Muller counter to bulkier radiation systems such as the High Purity Germanium detector, with different functionality for use in different settings, but the inability to provide real-time data makes radiation monitoring activities less effective. The deployment of manned vehicles equipped with these radiation sensors reduces the scope of radiation monitoring operations significantly, but the safety of radiation monitoring operators is still compromised. Recently, the Internet of Things (IoT) technology has been introduced to the world and offered solutions to these limitations. This review elucidates a systematic understanding of the fundamental usage of the Internet of Drones for radiation monitoring purposes. The extension of essential functional blocks in IoT can be expanded across radiation monitoring industries, presenting several emerging research opportunities and challenges. This article offers a comprehensive review of the evolutionary application of IoT technology in nuclear and radiation monitoring. Finally, the security of the nuclear industry is discussed.
    Matched MeSH terms: Technology; Remote Sensing Technology; Wireless Technology
  10. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Green Chemistry Technology
  11. Lee WL, Lim ZJ, Tang LY, Yahya NA, Varathan KD, Ludin SM
    Comput Inform Nurs, 2021 Nov 02;40(4):244-250.
    PMID: 34740221 DOI: 10.1097/CIN.0000000000000854
    The COVID-19 pandemic has rerouted the healthcare ecosystem by accelerating digital health, and rapid adoption of eHealth is partly influenced by eHealth literacy (eHL). This study aims to examine patients' eHL in relation to their "technology readiness"-an innate attitude that is underexplored in clinical research. A total of 276 adult inpatients with hypertension, diabetes mellitus, and coronary heart disease were surveyed cross-sectionally in 2019 using self-reported questionnaires: eHealth Literacy Scale and Technology Readiness Index (2.0). The study found moderate eHL (mean, 27.38) and moderate technology readiness (mean, 3.03) among patients. The hierarchical regression model shows that lower eHL scores were associated with patients of minor ethnicity (Malaysian Chinese), with an unemployed status, and having >1 cardiovascular risk (β = -0.136 to -0.215, R2 = 0.283, Ps < .005). Technology readiness is a strong determinant of eHL (ΔR2 = 0.295, P < .001) with its subdomains (optimism, innovativeness, and discomfort) significantly influencing eHL (|β| = 0.28-0.40, Ps < .001), except for the insecurity subdomain. Deployment of eHealth interventions that incorporate assessment of patients' eHL and technology readiness will enable targeted strategies, especially in resource-limited settings hit hard by the pandemic crisis.
    Matched MeSH terms: Technology
  12. Khoo KS, Chia WY, Wang K, Chang CK, Leong HY, Maaris MNB, et al.
    Sci Total Environ, 2021 Nov 01;793:148705.
    PMID: 34328982 DOI: 10.1016/j.scitotenv.2021.148705
    Fuel cells (FCs) are a chemical fuel device which can directly convert chemical energy into electrical energy, also known as electrochemical generator. Proton exchange membrane fuel cells (PEMFCs) are one of the most appealing FC systems that have been broadly developed in recent years. Due to the poor conductivity of electrolyte membrane used in traditional PEMFC, its operation at higher temperature is greatly limited. The incorporation of ionic liquids (ILs) which is widely regarded as a greener alternative compared to traditional solvents in the proton exchange membrane electrolyte shows great potential in high temperature PEMFCs (HT-PEMFCs). This review provides insights in the latest progress of utilizing ILs as an electrochemical electrolyte in PEMFCs. Besides, electrolyte membranes that are constructed by ILs combined with polybenzimidazole (PBI) have many benefits such as better thermal stability, improved mechanical properties, and higher proton conductivity. The current review aims to investigate the newest development and existing issues of ILs research in electrolyte and material selection, system fabrication method, synthesis of ILs, and experimental techniques. The evaluation of life cycle analysis, commercialization, and greenness of ILs are also discussed. Hence, this review provides insights to material scientists and develops interest of wider community, promoting the use of ILs to meet energy challenges.
    Matched MeSH terms: Technology
  13. Tan SF, Samsudin A
    Sensors (Basel), 2021 Oct 06;21(19).
    PMID: 34640967 DOI: 10.3390/s21196647
    The inherent complexities of Industrial Internet of Things (IIoT) architecture make its security and privacy issues becoming critically challenging. Numerous surveys have been published to review IoT security issues and challenges. The studies gave a general overview of IIoT security threats or a detailed analysis that explicitly focuses on specific technologies. However, recent studies fail to analyze the gap between security requirements of these technologies and their deployed countermeasure in the industry recently. Whether recent industry countermeasure is still adequate to address the security challenges of IIoT environment are questionable. This article presents a comprehensive survey of IIoT security and provides insight into today's industry countermeasure, current research proposals and ongoing challenges. We classify IIoT technologies into the four-layer security architecture, examine the deployed countermeasure based on CIA+ security requirements, report the deficiencies of today's countermeasure, and highlight the remaining open issues and challenges. As no single solution can fix the entire IIoT ecosystem, IIoT security architecture with a higher abstraction level using the bottom-up approach is needed. Moving towards a data-centric approach that assures data protection whenever and wherever it goes could potentially solve the challenges of industry deployment.
    Matched MeSH terms: Technology
  14. Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho SH, Rajesh Banu J, et al.
    Chemosphere, 2021 Oct;281:130886.
    PMID: 34020196 DOI: 10.1016/j.chemosphere.2021.130886
    Microalgae have drawn significant interest worldwide, owing to their enormous application potential in the green energy, biopharmaceutical, and nutraceutical industries. Many studies have proved and stated the potential of microalgae in the area of biofuel which is economically effective and environmentally friendly. Besides the commercial value, the potential of microalgae in environmental protection has also been investigated. Microalgae-based process is one of the most effective way to treat heavy metal pollution, compared to conventional methods, it does not release any toxic waste or harmful gases, and the aquatic organism will not receive any harmful effects. The potential dual role of microalge in phytoremedation and energy production has made it widely explored for its capability. The interest of microalgae in various application has motivated a new focus in green technologies. Considering the rapid population growth with the continuous increase on the global demand and the application of biomass in diverse field, significant upgrades have been performed to accommodate green technological advancement. In the past decade, noteworthy advancement has been made on the technology involving the diverse application of microalgae biomass. This review aims to explore on the application of microalgae and the development of green technology in various application for microalgae biomass. There is great prospects for researchers in this field to delve into other potential utilization of microalgae biomass not only for bioremediation process but also to generate revenues from microalgae by incorporating clean and green technology for long-term sustainability and environmental benefits.
    Matched MeSH terms: Technology
  15. Shamim A, Khan AA, Qureshi MA, Rafique H, Akhunzada A
    PMID: 34639652 DOI: 10.3390/ijerph181910352
    Traditional taxi services have now been transformed into e-hailing applications (EHA) such as Uber, Careem, Hailo, and Grab Car globally due to the proliferation of smartphone technology. On the one hand, these applications provide transport facilities. On the other hand, users are facing multiple issues in the adoption of EHAs. Despite problems, EHAs are still widely adopted globally. However, a sparse amount of research has been conducted related to EHAs, particular in regards to exploring the significant factors of intention behind using EHAs Therefore, there is a need to identify influencing factors that have a great impact on the adoption and acceptance of these applications. Hence, this research aims to present an empirical study on the factors influencing customers' intentions towards EHAs. The Technology Acceptance Model (TAM) was extended with four external factors: perceived mobility value, effort expectancy, perceived locational accuracy, and perceived price. A questionnaire was developed for the measurement of these factors. A survey was conducted with 211 users of EHAs to collect data. Structural equation modeling (SEM) was used to analyze the collected data. The results of this study exposed that perceived usefulness, perceived price, and perceived ease of use affect behavior intention to use EHAs. Furthermore, perceived ease of use was impacted by effort expectancy, perceived locational accuracy, and perceived mobility. The findings of the study provide a foundation to develop new guidelines for such applications that will be beneficial for developers and designers of these applications.
    Matched MeSH terms: Technology
  16. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
    Matched MeSH terms: Remote Sensing Technology
  17. Chong JWR, Yew GY, Khoo KS, Ho SH, Show PL
    J Environ Manage, 2021 Sep 01;293:112782.
    PMID: 34052610 DOI: 10.1016/j.jenvman.2021.112782
    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
    Matched MeSH terms: Technology
  18. Brida P, Krejcar O, Selamat A, Kertesz A
    Sensors (Basel), 2021 Sep 01;21(17).
    PMID: 34502784 DOI: 10.3390/s21175890
    The recent development in wireless networks and devices leads to novel services that will utilize wireless communication on a new level [...].
    Matched MeSH terms: Technology*; Wireless Technology*
  19. Almomani E, Alabbadi I, Fasseeh A, Al-Qutob R, Al-Sharu E, Hayek N, et al.
    Value Health Reg Issues, 2021 Sep;25:126-134.
    PMID: 34015521 DOI: 10.1016/j.vhri.2021.01.003
    OBJECTIVES: Health technology assessment (HTA) can increase the appropriateness and transparency of pricing and reimbursement decisions. Jordan is still in the early phase of its HTA implementation, although the country has very limited public resources for the coverage of healthcare technologies. The study objective was to explore and validate priorities in the HTA road map for Jordan and propose to facilitate the preferred HTA status.

    METHODS: Health policy experts from the public and private sectors were asked to participate in a survey to explore the current and future status of HTA implementation in Jordan. Semistructured interviews with senior policy makers supported by literature review were conducted to validate survey results and make recommendations for specific actions.

    RESULTS: Survey and interview results indicated a need for increased HTA training, including both short courses and academic programs and gradually increasing public funding for technology assessment and appraisal. Multiple HTA bodies with central coordination can be the most feasible format of HTA institutionalization. The weight of cost-effectiveness criterion based on local data with published reports and explicit decision thresholds should be increased in policy decisions of pharmaceutical and nonpharmaceutical technologies.

    CONCLUSION: Currently, HTA has limited impact on health policy decisions in Jordan, and when it is used to support pharmaceutical reimbursement decisions, it is mainly based on results from other countries without considering transferability of international evidence. Policy makers should facilitate HTA institutionalization and use in policy decisions by increasing the weight of local evidence in HTA recommendations.

    Matched MeSH terms: Technology Assessment, Biomedical*
  20. Kasavan S, Yusoff S, Guan NC, Zaman NSK, Fakri MFR
    Environ Sci Pollut Res Int, 2021 Sep;28(33):44780-44794.
    PMID: 34235692 DOI: 10.1007/s11356-021-15303-5
    Researchers have broadly studied textile waste, but the research topics development and performance trends in this study area are still unclear. A bibliometric analysis was conducted to explore the global scientific literature to determine state of the art on textile waste over the past 16 years. Data of publications output are identified based on the Web of Science (from 2015 to 2020). This study used VOSviewer to analyse collaboration networks among authors, countries, institutions, and author's keywords in identifying five main clusters. A total of 3296 papers in textile waste research were identified. In this study, a total of 10451 authors were involved in textile waste research, and 36 authors among them published more than ten research publications in the period of this study. China has been in a top position in textile waste research moving from 3 output publications in 2005 to 91 output publications in 2020. Indian Institute of Technology System IIT System was ranked first in terms of the total publication number (85 publications, 2.45%). Textile wastewater and adsorption are the most commonly used keywords that reflect the current main research direction in this field and received more attention in recent years. Based on keyword cluster analysis outputs, textile waste research can be categorized into five types of clusters, namely (1) pollutant compositions, (2) component of textile wastewater, (3) treatment methods for textile wastewater, (4) effect mechanism of textile wastewater, and (5) recyclability of textile waste.
    Matched MeSH terms: Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links