Displaying publications 81 - 100 of 189 in total

Abstract:
Sort:
  1. Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL
    Sensors (Basel), 2014 Jul 22;14(7):13186-209.
    PMID: 25054632 DOI: 10.3390/s140713186
    A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol-gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50-500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors.
    Matched MeSH terms: Urea/chemistry*; Urease/chemistry
  2. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
    Matched MeSH terms: Urea/chemistry
  3. Chung ELT, Predith M, Nobilly F, Samsudin AA, Jesse FFA, Loh TC
    Trop Anim Health Prod, 2018 Jun 20.
    PMID: 29926360 DOI: 10.1007/s11250-018-1641-4
    Brachiaria decumbens is an extremely productive tropical grass due to its aggressive growth habit and its adaptation to a varied range of soil types and environments. As a result of the vast availability, treated B. decumbens demonstrates as a promising local material that could be utilised as an improved diet for sheep and goats. Despite the fact that the grass significantly increases weight gains in grazing farm animals, there were many reports of general ill-thrift and sporadic outbreaks of photosensitivity in livestock due to the toxic compound of steroidal saponin found in B. decumbens. Ensiling and haymaking were found to be effective in removing toxin and undesirable compounds in the grass. Biological treatments using urea, activated charcoal, polyethylene glycol, and effective microorganisms were found to be useful in anti-nutritional factor deactivation and improving the nutritive values of feedstuffs. Besides, oral administration of phenobarbitone showed some degree of protection in sheep that fed on B. decumbens pasture. In this review, we aim to determine the effect of B. decumbens toxicity and possible treatment methods on the grass to be used as an improved diet for small ruminant.
    Matched MeSH terms: Urea
  4. M. J. Khatun, T.C. Loh, H.L. Foo, M.K.I. Khan
    MyJurnal
    Amino acids are known as anabolic factors that are essential for formation of muscle by stimulating protein synthesis while inhibiting proteolysis, and they are significant component for the synthesis of various nitrogenous compounds. There are 20 amino acids are essential to require in cell for formation of body protein of which about 10 amino acids, which cannot be synthesized by the birds are termed essential. Among the essential amino acid arginine one of the essential amino acids for chickens because, like other birds, they are unable to obtain Arginine from endogenous sources due to the absence of most of the enzymes involved in the urea cycle. This amino acid involved in synthesis of proline, hydroxyl proline and polyamines which are essential for connective tissue synthesis as well as increased growth of chicken. Moreover, L-arginine (L-Arg) is effective for reducing fat deposition in broiler. Moreover, it decrease heat stress increase meat quality and increase immune response of broiler. This re-view presents the recent advances in the relevance of the inclusion of excess L-Arginine in broiler ration to growth, fat deposition and immune response in broiler.
    Matched MeSH terms: Urea
  5. Ahmed OH, Hussin A, Ahmad HM, Rahim AA, Majid NM
    ScientificWorldJournal, 2008 Apr 20;8:394-9.
    PMID: 18454247 DOI: 10.1100/tsw.2008.68
    Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.
    Matched MeSH terms: Urea/pharmacokinetics*
  6. Menon PS, Said FA, Mei GS, Berhanuddin DD, Umar AA, Shaari S, et al.
    PLoS One, 2018;13(7):e0201228.
    PMID: 30052647 DOI: 10.1371/journal.pone.0201228
    This work investigates the surface plasmon resonance (SPR) response of 50-nm thick nano-laminated gold film using Kretschmann-based biosensing for detection of urea and creatinine in solution of various concentrations (non-enzymatic samples). Comparison was made with the presence of urease and creatininase enzymes in the urea and creatinine solutions (enzymatic samples), respectively. Angular interrogation technique was applied using optical wavelengths of 670 nm and 785 nm. The biosensor detects the presence of urea and creatinine at concentrations ranging from 50-800 mM for urea samples and 10-200 mM for creatinine samples. The purpose of studying the enzymatic sample was mainly to enhance the sensitivity of the sensor towards urea and creatinine in the samples. Upon exposure to 670 nm optical wavelength, the sensitivity of 1.4°/M was detected in non-enzymatic urea samples and 4°/M in non-enzymatic creatinine samples. On the other hand, sensor sensitivity as high as 16.2°/M in urea-urease samples and 10°/M in creatinine-creatininase samples was detected. The enhanced sensitivity possibly attributed to the increase in refractive index of analyte sensing layer due to urea-urease and creatinine-creatininase coupling activity. This work has successfully proved the design and demonstrated a proof-of-concept experiment using a low-cost and easy fabrication of Kretschmann based nano-laminated gold film SPR biosensor for detection of urea and creatinine using urease and creatininase enzymes.
    Matched MeSH terms: Urea/analysis*; Urease/analysis
  7. Choong MF, Mak JW
    Trop. Med. Parasitol., 1991 Mar;42(1):71-2.
    PMID: 1675809
    The Presbytis cristata--Brugia malayi model, now established as a reliable non-human primate model for the experimental screening of potential filaricides, was monitored at monthly intervals for changes in the liver and renal function tests and also for alkaline phosphatase levels during infection. Animals infected with 200-400 infective larvae became patient at 50-90 days post-infection and geometric mean microfilarial counts were above 1000 per ml from the fourth month onwards. There were no significant changes in the biochemical parameters monitored throughout the period of observation. This is an important observation as any changes seen in these parameters during experimental drug studies can be attributed to drug reaction or toxicity and this will be invaluable in decision making as to drug safety.
    Matched MeSH terms: Blood Urea Nitrogen
  8. Nasoha NZ, Luthfi AAI, Roslan MF, Hariz HB, Bukhari NA, Manaf SFA
    Sci Rep, 2023 Nov 07;13(1):19284.
    PMID: 37935748 DOI: 10.1038/s41598-023-46061-8
    This study explores utilizing pineapple peel (PP) hydrolysate as a promising carbon source for xylitol production, covering scopes from the pre-treatment to the fermentation process. The highest xylose concentration achieved was around 20 g/L via mild acid hydrolysis (5% nitric acid, 105 °C, 20-min residence time) with a solid loading of 10%. Two sets fermentability experiments were carried out of varying pH levels in synthetic media that includes acetic acid as the main inhibitors and hydrolysate supplemented with diverse nitrogen source. The results revealed that pH 7 exhibited the highest xylitol production, yielding 0.35 g/g. Furthermore, urea was found to be a highly promising and cost-effective substitute for yeast extract, as it yielded a comparable xylitol production of 0.31 g/g with marginal difference of only 0.01 g/g compared to yeast extract further highlights the viability of urea as the preferred option for reducing xylitol production cost. The absence of a significant difference between the synthetic media and hydrolysate, with only a marginal variance of 0.35 to 0.32 g/g, implies that acetic acid is indeed the primary constraint in xylitol production using PP hydrolysate. The study sheds light on PP biomass's potential for xylitol production, aligning economic benefits with environmental sustainability and waste management.
    Matched MeSH terms: Urea
  9. Suguna S, Shankar S, Jaganathan SK, Manikandan A
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1019-1026.
    PMID: 29448527 DOI: 10.1166/jnn.2018.13960
    Ni-doped cobalt aluminate NixCo1-xAl2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) spinel nanoparticles were successfully synthesized by a simple microwave combustion method using urea as the fuel and as well as reducing agent. X-ray powder diffraction (XRD) was confirmed the formation of single phase, cubic spinel cobalt-nickel aluminate structure without any other impurities. Average crystallite sizes of the samples were found to be in the range of 18.93 nm to 21.47 nm by Scherrer's formula. Fourier transform infrared (FT-IR) spectral analysis was confirmed the corresponding functional groups of the M-O, Al-O and M-Al-O (M = Co and Ni) bonds of spinel NixCo1-xAl2O4 structure. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images was confirmed the particle like nanostructured morphology. Energy band gap (Eg) value was calculated using UV-Visible diffuse reflectance spectra (DRS) and the Eg values increased with increasing Ni2+ dopant from x = 0.2 (3.58 eV) to x = 1.0 (4.15 eV). Vibrating sample magnetometer (VSM) measurements exposed that undoped and Ni-doped CoAl2O4 samples have superparamagnetic behavior and the magnetization (Ms) values were increased with increasing Ni2+ ions. Spinel NixCo1-xAl2O4 samples has been used for the catalytic oxidation of benzyl alcohol into benzaldehyde and was found that the sample Ni0.6Co0.4Al2O4 showed higher conversion 94.37% with 100% selectivity than other samples, which may be due to the smaller particle size and higher surface area.
    Matched MeSH terms: Urea
  10. Zainol Abidin MN, Goh PS, Said N, Ismail AF, Othman MHD, Hasbullah H, et al.
    ACS Appl Mater Interfaces, 2020 Jul 22;12(29):33276-33287.
    PMID: 32589391 DOI: 10.1021/acsami.0c08947
    The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.
    Matched MeSH terms: Urea/chemistry*
  11. Hashim NAA, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Molecular and clinical oncology, 2019 Jul;11(1):3-14.
    PMID: 31289671 DOI: 10.3892/mco.2019.1853
    Accurate diagnosis of colorectal cancer (CRC) relies on the use of invasive tools such as colonoscopy and sigmoidoscopy. Non-invasive tools are less sensitive in detecting the disease, particularly in the early stage. A number of researchers have used metabolomics analyses on serum/plasma samples of patients with CRC compared with normal healthy individuals in an effort to identify biomarkers for CRC. The aim of the present review is to compare reported serum metabolomics profiles of CRC and to identify common metabolites affected among these studies. A literature search was performed to include any experimental studies on global metabolomics profile of CRC using serum/plasma samples published up to March 2018. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used to assess the quality of the studies reviewed. In total, nine studies were included. The studies used various analytical platforms and were performed on different populations. A pathway enrichment analysis was performed using the data from all the studies under review. The most affected pathways identified were protein biosynthesis, urea cycle, ammonia recycling, alanine metabolism, glutathione metabolism and citric acid cycle. The metabolomics analysis revealed levels of metabolites of glycolysis, tricarboxylic acid cycle, anaerobic respiration, protein, lipid and glutathione metabolism were significantly different between cancer and control samples. Although the majority of differentiating metabolites identified were different in the different studies, there were several metabolites that were common. These metabolites include pyruvic acid, glucose, lactic acid, malic acid, fumaric acid, 3-hydroxybutyric acid, tryptophan, phenylalanine, tyrosine, creatinine and ornithine. The consistent dysregulation of these metabolites among the different studies suggest the possibility of common diagnostic biomarkers for CRC.
    Matched MeSH terms: Urea
  12. Mustapha Umar Imam, Sasikala M. Chinnappan, Maznah Ismail
    Sains Malaysiana, 2017;46:589-595.
    There is growing interest in the use of plant bioresources for managing type 2 diabetes. In this study, Rhodamnia cinerea, which is used traditionally to manage diseases in Malaysia, was explored for its antidiabetic effects. Type 2 diabetic rats were managed for 4 weeks using aqueous extract of R. cinerea or quercetin. Weights and fasting glucose were measured weekly, while serum lipid profiles, insulin, antioxidant status, urea, creatinine and liver enzymes were assayed at the end. Sorbitol contents, antioxidant capacities and aldose reductase activities of the kidney, lens and sciatic nerve were also assessed. The results showed that the aqueous extract of R. Cinerea mainly contained Myricitrin and it reduced glycemia (p>0.05), lipid profiles (p<0.05), F2-isoprostanes (p<0.05) and overall metabolic condition of type 2 diabetic rats. R. cinerea also attenuated sorbitol contents of the nerve (p<0.05) and kidney (p<0.05), partly through regulating the activity of aldose reductase (p<0.05 for nerve) and sorbitol dehydrogenase (p<0.05 for kidney) in comparison with diabetic untreated group. Quercetin is a known aldose reductase inhibitor and can improve several metabolic indices related to Type 2 diabetes. In this study, the results of R. cinerea were comparable to or better than those of quercetin, suggesting that R. cinerea extract can be a good candidate for managing Type 2 diabetes and its complications related to sorbitol accumulation.
    Matched MeSH terms: Urea
  13. Kravchenko I, Rudyk I, Medentseva O
    PMID: 34628401
    Over the past decades, there has been an active scientific search for drugs that can increase myocardial contractility and improve the course of heart failure. Omecamtiv Mecarbil, a drug from the group of cardiac myosin activators, heads the list of applicants for clinical use. The article presents the results of several randomized clinical trials which studied the efficacy and safety of Omecamtiv Mecarbil in heart failure: ATOMIC-AHF, COSMIC-HF and GALACTIC-HF. ATOMIC-AHF showed a tendency to reduce the risk of developing supraventricular and ventricular arrhythmias in heart failure. COSMIC-HF has proven the ability of Omecamtiv Mecarbil to improve the quality of life of patients with heart failure. GALACTIC-HF may be a turning point in the medical treatment of heart failure. For the first time, clinical evidence of the ability of the selective cardiac myosin activator Omecamtiv Mecarbil to improve myocardial contractile function, reduce the severity of symptoms of heart failure and reduce the risk of cardiovascular death was obtained.
    Matched MeSH terms: Urea/analogs & derivatives
  14. Chai WS, Sun D, Cheah KH, Li G, Meng H
    ACS Omega, 2020 Aug 11;5(31):19525-19532.
    PMID: 32803046 DOI: 10.1021/acsomega.0c01804
    Hydroxylammonium nitrate (HAN) is a promising green propellant because of its low toxicity, high volumetric specific impulse, and reduced development cost. Electrolytic decomposition of HAN is an efficient approach to prepare it for further ignition and combustion. This paper describes the investigation of a co-electrolysis effect on electrolytic decomposition of HAN-fuel mixtures using stainless steel-platinum (SS-Pt) electrodes. For the first time, different materials were utilized as electrodes to alter the cathodic reaction, which eliminated the inhibition effect and achieved a repeatable and consistent electrolytic decomposition of HAN solution. Urea and methanol were added as fuel components in the HAN-fuel mixtures. When the mass ratio of added urea ≥20%, the electrolytic decomposition of a HAN-urea ternary mixture achieved 67% increment in maximum gas temperature (Tgmax) and 185% increment in overall temperature increasing rate over the benchmark case of HAN solution. The co-electrolysis of urea released additional electrons into the mixtures and enhanced the overall electrolytic decomposition of HAN. In contrast, the addition of methanol did not improve the Tgmax but only increased the overall temperature increasing rate. This work has important implications in the development of an efficient and reliable electrolytic decomposition system of HAN and its mixtures for propulsion applications.
    Matched MeSH terms: Urea
  15. Thambiah CS, Samsudin IN, George E, Ranjit LK, Saat NS, Hussein Z, et al.
    MyJurnal
    Patients with diabetes have an earlier onset and increased severity of anaemia compared to those with similar degree of renal impairment from other causes. Anaemia is associated with an increased risk of vascular complications. In this study, we determined the prevalence of anaemia in T2DM patients and its association with sociodemographic, clinical and laboratory parameters in an endocrine tertiary hospital in Malaysia. This was a cross-sectional study using retrospective electronic data from January 2011 to December 2013 of 165 T2DM patients in Hospital Putrajaya. Data was analysed using IBM SPSS Statistics version 21.0 for Windows. The prevalence of anaemia was 39.4% and majority had normocytic normochromic (80%), mild (58.5%) anaemia. Majority were Malays (73.9%), aged below 60 with comparable gender percentage and long-standing, poorly-controlled DM [median fasting blood sugar (FBS) 8mmol/L; glycated haemoglobin (HbA1c) 7.9%]. Using the KDIGO chronic kidney disease (CKD) staging system, 86% of these patients were in stages 3-5. Anaemic patients had a significantly higher serum urea, creatinine and a lower FBS, estimated glomerular filtration rate (eGFR) compared to non-anaemic patients. Anaemic patients with diabetic nephropathy had a significantly lower haemoglobin (Hb) compared to those without this complication (p=0.022). The sensitivity and specificity at a cut-off eGFR value of 38.3 ml/min/1.73 m2 (maximum Youden index = 0.462) was 66.7% and 79.5%, respectively to discriminate mild from moderate anaemia. This study shows that anaemia is already present in T2DM patients in Hospital Putrajaya at initial presentation to the specialist outpatient clinic and is significantly associated with CKD. Hence, it emphasises the obligatory need for routine and follow-up full blood count monitoring in T2DM patients in primary care as well as tertiary settings in Malaysia to enable early detection and aggressive correction of anaemia in preventing further complications.

    Study site: endocrine clinic, Hospital Putrajaya
    Matched MeSH terms: Urea
  16. Wan Elina Faradilla Wan Khalid, Lee YH, Mohamad Nasir Mat Arip
    Sains Malaysiana, 2018;47:941-949.
    Cellulose nanomaterial with rod-like structure and highly crystalline order, usually formed by elimination of the amorphous region from cellulose during acid hydrolysis. Cellulose nanomaterial with the property of biocompatibility and nontoxicity can be used for enzyme immobilization. In this work, urease enzyme was used as a model enzyme to study the surface modification of cellulose nanomaterial and its potential for biosensor application. The cellulose nanocrystal (CNC) surface was modified using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation to introduce the carboxyl group at C6 primary alcohol. The success of enzyme immobilization and surface modification was confirmed using chemical tests and measured using UV-Visible spectrophotometer. The immobilization strategy was then applied for biosensor application for urea detection. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were used for electroanalytical characterization of the urea biosensor.
    Matched MeSH terms: Urea; Urease
  17. Sahathevan R, Wan Yahya WNN, Tan HJ, Mohd Ibrahim N
    Med J Malaysia, 2013 Apr;68(2):187-8.
    PMID: 23629577
    Matched MeSH terms: Urea*
  18. Nor Aziawati Azahari, Sarani Zakaria, Hatika Kaco, Sin Yee Gan, Chia Chin Hua, Sharifah Nabihah Syed Jaafar, et al.
    Sains Malaysiana, 2017;46:795-801.
    Membran selulosa terjana semula (MS) daripada pulpa teras kenaf telah berjaya dihasilkan menggunakan kaedah pra penyejukan dan digumpal menggunakan larutan asid sulfurik. MS disediakan daripada pelarutan selulosa kenaf dalam larutan akues NaOH/urea dan larutan selulosa seterusnya digumpal dengan H2SO4 pada kepekatan 5-12 peratus berat (% bt.) selama 1-10 min. Pengaruh kepekatan penggumpal H2SO4 dan masa penggumpalan ke atas struktur, saiz liang, sifat mekanik dan ketelusan cahaya MS telah dikaji menggunakan pembelauan sinar-X (XRD), imbasan mikroskop elektron tekanan boleh ubah (VPSEM), penguji regangan dan spektrofotometer ultra-violet sinar tampak (UV-vis). Keputusan VPSEM menunjukkan perubahan saiz liang membran bergantung kepada kepekatan larutan penggumpal H2SO4, manakala masa penggumpalan tidak mempengaruhi saiz liang membran. Membran yang direndam dengan larutan penggumpal pada kepekatan 10 % bt. dan masa pembekuan yang sederhana iaitu 5 min menunjukkan sifat mekanik yang lebih baik dengan nilai kekuatan regangan masing-masing 41.9 dan 43.5 MPa. Oleh itu, kajian ini dapat memberikan maklumat mengenai penyediaan MS dengan pelbagai saiz liang dan sifat mekanik dengan pengubahsuaian kepekatan dan masa penggumpalan.
    Matched MeSH terms: Urea
  19. Noor Suffiah Md. Zin, Siti Nadzirah Padrilah, Mohd Fadhil Abd. Rahman, Koh, Sim Han, Ariff Khalid, Mohd. Yunus Shukor
    MyJurnal
    2,4-dinitrophenol (2,4-DNP) is utilized in the production of wood preservatives, dyes, and also
    as a pesticide. Human acute (short-term) exposure to 2,4-DNP in humans by means of oral
    exposure are nausea or vomiting, sweating, headaches, dizziness, and weight reduction. Thus, the
    removal of this compound is highly sought. A 2,4-DNP-degrading bacterium (isolate 1) was
    isolated from a sample soil from Terengganu. This bacterium (isolate 1) was characterized as a
    rod Gram positive, non-sporulated, and non-motile bacterium. The bacterium is oxidase negative
    and had catalase positive activity and was able to grow aerobically on 2,4-dinitrophenol as the
    sole carbon source. This bacterium showed maximal growth on 2,4-DNP at the temperature
    optimum of 30 oC, pH 5.0 and was tolerant to 2,4-DNP concentration of up to 0.5 mM (0.092
    g/L). This bacterium prefers to use urea as the nitrogen source in addition to yeast extract for
    mineral source and vitamin precursors.
    Matched MeSH terms: Urea
  20. Yee W, Kumar JN, Muthusamy PD
    Indian J Microbiol, 2018 Mar;58(1):109-113.
    PMID: 29434405 DOI: 10.1007/s12088-017-0698-5
    2-mercaptoethanol (2-ME), alongside polyvinylpyrrolidone is commonly used in plant DNA extractions to deal with polyphenols, which could interfere with extraction and downstream applications. 2-ME is also commonly used to denature proteins and nucleases, especially RNAses. On the contrary, we found that the presence of 2-ME in lysis buffer interfered with DNA extraction from 12 strains of freshwater microalgae, resulting in DNA with poor integrity. We also found that the TNES-urea buffer, commonly used for preservation and DNA extraction from fish, appears as effective as the SDS and CTAB buffer for some microalgae strains. Results from our study suggests that the inclusion of 2-ME in DNA extraction protocols may be detrimental for isolation of good quality DNA from freshwater microalgae, and therefore recommend eliminating it or testing varying concentrations of 2-ME when developing species-specific extraction protocols for microalgae.
    Matched MeSH terms: Urea
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links