Displaying publications 981 - 1000 of 3311 in total

Abstract:
Sort:
  1. Chan YT, Cheok YY, Cheong HC, Tan GMY, Seow SR, Tang TF, et al.
    Immunol Cell Biol, 2023 Apr;101(4):305-320.
    PMID: 36658328 DOI: 10.1111/imcb.12621
    Genital Chlamydia trachomatis infection remains a major health issue as it causes severe complications including pelvic inflammatory disease, ectopic pregnancy and infertility in females as a result of infection-associated chronic inflammation. Podoplanin, a transmembrane receptor, has been previously reported on inflammatory macrophages. Thus, strategies that specifically target podoplanin might be able to reduce local inflammation. This study investigated the expression level and function of podoplanin in a C. trachomatis infection model. C57BL/6 mice infected with the mouse pathogen Chlamydia muridarum were examined intermittently from days 1 to 60 using flow cytometry analysis. Percentages of conventional macrophages (CD11b+ CD11c- F4/80+ ) versus inflammatory macrophages (CD11b+ CD11c+ F4/80+ ), and the expression of podoplanin in these cells were investigated. Subsequently, a podoplanin-knockout RAW264.7 cell was used to evaluate the function of podoplanin in C. trachomatis infection. Our findings demonstrated an increased CD11b+ cell volume in the spleen at day 9 after the infection, with augmented podoplanin expression, especially among the inflammatory macrophages. A large number of podoplanin-expressing macrophages were detected in the genital tract of C. muridarum-infected mice. Furthermore, analysis of the C. trachomatis-infected patients demonstrated a higher percentage of podoplanin-expressing monocytes than that in the noninfected controls. Using an in vitro infection in a transwell migration assay, we identified that macrophages deficient in podoplanin displayed defective migratory function toward C. trachomatis-infected HeLa 229 cells. Lastly, using immunoprecipitation-mass spectrometry method, we identified two potential podoplanin interacting proteins, namely, Cofilin 1 and Talin 1 actin-binding proteins. The present study reports a role of podoplanin in directing macrophage migration to the chlamydial infection site. Our results suggest a potential for reducing inflammation in individuals with chronic chlamydial infections by targeting podoplanin.
    Matched MeSH terms: RAW 264.7 Cells; HeLa Cells
  2. Tappe D, Slesak G, Pérez-Girón JV, Schäfer J, Langeheinecke A, Just-Nübling G, et al.
    Clin Vaccine Immunol, 2015 Jun;22(6):674-7.
    PMID: 25903356 DOI: 10.1128/CVI.00042-15
    Sarcocystis nesbitti is a parasite responsible for a biphasic eosinophilic febrile myositis syndrome in two recent outbreaks in Malaysia. We demonstrate Th2 cytokine polarization in infected travelers, an overall cytokine production decrease in the early phase of the disease suggestive of initial immunosuppression, and elevated levels of proinflammatory and chemotactic cytokines in the later myositic phase.
    Matched MeSH terms: Th2 Cells/immunology
  3. Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, et al.
    Proc Natl Acad Sci U S A, 2021 Jul 06;118(27).
    PMID: 34210797 DOI: 10.1073/pnas.2021091118
    While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR-/-) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR-mediated signaling pathway elevated the expression of β-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.
    Matched MeSH terms: Neural Stem Cells/metabolism
  4. Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, et al.
    Eur J Med Chem, 2024 Sep 05;275:116607.
    PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607
    Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
    Matched MeSH terms: Vero Cells; MCF-7 Cells
  5. Najim N, Bathich Y, Zain MM, Hamzah AS, Shaameri Z
    Molecules, 2010 Dec 17;15(12):9340-53.
    PMID: 21169884 DOI: 10.3390/molecules15129340
    The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuronphenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
    Matched MeSH terms: HL-60 Cells; U937 Cells
  6. Hassan RA, Heng LY, Ahmad A, Tan LL
    PLoS One, 2019;14(4):e0214580.
    PMID: 30990847 DOI: 10.1371/journal.pone.0214580
    A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
    Matched MeSH terms: Cells, Immobilized/metabolism
  7. Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, et al.
    J Dairy Sci, 2019 Jun;102(6):4783-4797.
    PMID: 30954261 DOI: 10.3168/jds.2018-16103
    The aims of this study were to investigate the effects of Lactobacillus plantarum DR7 isolated from bovine milk against upper respiratory tract infections (URTI) and elucidate the possible mechanisms underlying immunomodulatory properties. The DR7 strain (9 log cfu/d) was administered for 12 wk in a randomized, double-blind, and placebo-controlled human study involving 109 adults (DR7, n = 56; placebo, n = 53). Subjects were assessed for health conditions monthly via questionnaires, and blood samples were evaluated for cytokine concentrations, peroxidation and oxidative stress, and gene expression in T cells and natural killer (NK) cells. The administration of DR7 reduced the duration of nasal symptoms (mean difference 5.09 d; 95% CI: 0.42-9.75) and the frequency of URTI (mean difference 0.32; 95% CI: 0.01-0.63) after 12 and 4 wk, respectively, compared with the placebo. The DR7 treatment suppressed plasma proinflammatory cytokines (IFN-γ, TNF-α) in middle-aged adults (30 to 60 yr old), while enhancing anti-inflammatory cytokines (IL-4, IL-10) in young adults (<30 yr old), accompanied by reduced plasma peroxidation and oxidative stress levels compared with the placebo. Young adults who received DR7 showed higher expression of plasma CD44 and CD117 by 4.50- and 2.22-fold, respectively, compared with the placebo. Meanwhile, middle-aged adults showed lower expression of plasma CD4 and CD8 by 11.26- and 1.80-fold, respectively, compared with the placebo, indicating less T-cell activation. In contrast, both young and middle-aged adults who received DR7 showed enhanced presence of nonresting and mature NK cells compared with those who received the placebo. We postulate that DR7 alleviated the symptoms of URTI by improving inflammatory parameters and enhancing immunomodulatory properties.
    Matched MeSH terms: Killer Cells, Natural/immunology
  8. Liu Y, Liaw YM, Teo CH, Cápal P, Wada N, Fukui K, et al.
    Sci Rep, 2021 Mar 30;11(1):7160.
    PMID: 33785802 DOI: 10.1038/s41598-021-86130-4
    Although plants and animals are evolutionarily distant, the structure and function of their chromosomes are largely conserved. This allowed the establishment of a human-Arabidopsis hybrid cell line in which a neo-chromosome was formed by insertion of segments of Arabidopsis chromosomes into human chromosome 15. We used this unique system to investigate how the introgressed part of a plant genome was maintained in human genetic background. The analysis of the neo-chromosome in 60- and 300-day-old cell cultures by next-generation sequencing and molecular cytogenetics suggested its origin by fusion of DNA fragments of different sizes from Arabidopsis chromosomes 2, 3, 4, and 5, which were randomly intermingled rather than joined end-to-end. The neo-chromosome harbored Arabidopsis centromeric repeats and terminal human telomeres. Arabidopsis centromere wasn't found to be functional. Most of the introgressed Arabidopsis DNA was eliminated during the culture, and the Arabidopsis genome in 300-day-old culture showed significant variation in copy number as compared with the copy number variation in the 60-day-old culture. Amplified Arabidopsis centromere DNA and satellite repeats were localized at particular loci and some fragments were inserted into various positions of human chromosome. Neo-chromosome reorganization and behavior in somatic cell hybrids between the plant and animal kingdoms are discussed.
    Matched MeSH terms: Hybrid Cells*
  9. Ibrahim IAA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, et al.
    Int J Nanomedicine, 2024;19:1109-1124.
    PMID: 38344441 DOI: 10.2147/IJN.S445206
    BACKGROUND: Liver cancer is the sixth most prevalent form of cancer and the second major cause of cancer-associated mortalities worldwide. Cancer nanotechnology has the ability to fundamentally alter cancer treatment, diagnosis, and detection.

    OBJECTIVE: In this study, we explained the development of graphene oxide/polyethylene glycol/folic acid/brucine nanocomposites (GO/PEG/Bru-FA NCs) and evaluated their antimicrobial and anticancer effect on the liver cancer HepG2 cells.

    METHODOLOGY: The GO/PEG/Bru-FA NCs were prepared using the co-precipitation technique and characterized using various techniques. The cytotoxicity of the GO/PEG/Bru-FA NCs was tested against both liver cancer HepG2 and non-malignant Vero cells using an MTT assay. The antimicrobial activity of the GO/PEG/Bru-FA NCs was tested against several pathogens using the well diffusion technique. The effects of GO/PEG/Bru-FA NCs on endogenous ROS accumulation, apoptosis, and MMP levels were examined using corresponding fluorescent staining assays, respectively. The apoptotic protein expressions, such as Bax, Bcl-2, and caspases, were studied using the corresponding kits.

    RESULTS: The findings of various characterization assays revealed the development of GO/PEG/Bru-FA NCs with face-centered spherical morphology and an agglomerated appearance with an average size of 197.40 nm. The GO/PEG/Bru-FA NCs treatment remarkably inhibited the growth of the tested pathogens. The findings of the MTT assay evidenced that the GO/PEG/Bru-FA NCs effectively reduced the HepG2 cell growth while not showing toxicity to the Vero cells. The findings of the fluorescent assay proved that the GO/PEG/Bru-FA NCs increased ROS generation, reduced MMP levels, and promoted apoptosis in the HepG2 cells. The levels of Bax, caspase-9, and -3 were increased, and Bcl-2 was reduced in the GO/PEG/Bru-FA NCs-treated HepG2 cells.

    CONCLUSION: The results of this work demonstrate that GO/PEG/Bru-FA NCs suppress viability and induce apoptosis in HepG2 cells, indicating their potential as an anticancer candidate.

    Matched MeSH terms: Vero Cells; Hep G2 Cells
  10. Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, et al.
    Stem Cell Res Ther, 2021 01 12;12(1):54.
    PMID: 33436065 DOI: 10.1186/s13287-020-02088-6
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin.

    METHODS: In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD).

    RESULTS: Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD.

    CONCLUSIONS: In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.

    Matched MeSH terms: Mesenchymal Stromal Cells*
  11. Liptzin DR, Pickett K, Brinton JT, Agarwal A, Fishman MP, Casey A, et al.
    Ann Am Thorac Soc, 2020 Jun;17(6):724-728.
    PMID: 32109152 DOI: 10.1513/AnnalsATS.201908-617OC
    Rationale: Neuroendocrine cell hyperplasia of infancy (NEHI) is an important form of children's interstitial and diffuse lung disease for which the diagnostic strategy has evolved. The prevalence of comorbidities in NEHI that may influence treatment has not been previously assessed.Objectives: To evaluate a previously unpublished NEHI clinical score for assistance in diagnosis of NEHI and to assess comorbidities in NEHI.Methods: We performed a retrospective chart review of 199 deidentified patients with NEHI from 11 centers. Data were collected in a centralized Research Electronic Data Capture registry and we performed descriptive statistics.Results: The majority of patients with NEHI were male (66%). The sensitivity of the NEHI Clinical Score was 87% (95% confidence interval [CI], 0.82-0.91) for all patients from included centers and 93% (95% CI, 0.86-0.97) for those with complete scores (e.g., no missing data). Findings were similar when we limited the population to the 75 patients diagnosed by lung biopsy (87%; 95% CI, 0.77-0.93). Of those patients evaluated for comorbidities, 51% had gastroesophageal reflux, 35% had aspiration or were at risk for aspiration, and 17% had evidence of immune system abnormalities.Conclusions: The NEHI Clinical Score is a sensitive tool for clinically evaluating NEHI; however, its specificity has not yet been addressed. Clinicians should consider evaluating patients with NEHI for comorbidities, including gastroesophageal reflux, aspiration, and immune system abnormalities, because these can contribute to the child's clinical picture and may influence clinical course and treatment.
    Matched MeSH terms: Neuroendocrine Cells/pathology
  12. Leong LM, Chan KM, Hamid A, Latip J, Rajab NF
    PMID: 26884792 DOI: 10.1155/2016/2091085
    The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.
    Matched MeSH terms: Epithelial Cells; HCT116 Cells
  13. Yeap SK, Omar AR, Ali AM, Ho WY, Beh BK, Alitheen NB
    PMID: 21941589 DOI: 10.1155/2012/786487
    The in vivo immunomodulatory effect of ethanolic extracts from leaves of Rhaphidophora korthalsii was determined via immune cell proliferation, T/NK cell phenotyping, and splenocyte cytotoxicity of BALB/c mice after 5 consecutive days of i.p. administration at various concentrations. Splenocyte proliferation index, cytotoxicity, peripheral blood T/NK cell population, and plasma cytokine (IL-2 and IFN-γ) in mice were assessed on day 5 and day 15. High concentration of extract (350 μg/mice/day for 5 consecutive days) was able to stimulate immune cell proliferation, peripheral blood NK cell population, IL-2, and IFN- γ cytokines, as well as splenocyte cytotoxicity against Yac-1 cell line. Unlike rIL-2 which degraded rapidly, the stimulatory effect from the extract managed to last until day 15. These results suggested the potential of this extract as an alternative immunostimulator, and they encourage further study on guided fractionation and purification to identify the active ingredients that contribute to this in vitro and in vivo immunomodulatory activity.
    Matched MeSH terms: Killer Cells, Natural; Natural Killer T-Cells
  14. Lim CP, Yam MF, Asmawi MZ, Chin VK, Khairuddin NH, Yong YK, et al.
    PMID: 31097973 DOI: 10.1155/2019/7521504
    Medicinal plants have been considered as promising sources of drugs in treating various cancers. Crinum amabile (C. amabile), a plant species from the Amaryllidaceae family, is claimed to be a potential source for cancer chemotherapeutic compounds. Here, we aimed to investigate the potential of C. amabile as an anticancer agent. Dried leaves of C. amabile were serially extracted and our findings showed that chloroform extract (CE) was shown to exhibit cytotoxic effect against all cancer cell lines used. This active extract was further fractionated in which F5 fraction was shown to possess the highest cytotoxicity among all fractions. F5 fraction was then tested in-depth through Annexin V/FITC apoptosis and DNA fragmentation assays to determine its apoptotic effect on MCF-7 cells. Results revealed that F5 fraction only showed induction of cell apoptosis starting at 72-hour treatment while DNA fragmentation was not detected at any of the concentrations and treatment periods tested. Meanwhile, cell proliferation assay revealed that F5 fraction was able to inhibit normal cell proliferation as well as VEGF-induced cell proliferation of normal endothelial cell (HUVECs). In conclusion, F5 fraction from C. amabile leaf CE was able to exhibit cytostatic effect through antiproliferation activity rather than induction of cell apoptosis and therefore has the potential to be further investigated as an anticancer agent.
    Matched MeSH terms: Endothelial Cells; MCF-7 Cells
  15. Teoh WY, Sim KS, Moses Richardson JS, Abdul Wahab N, Hoe SZ
    PMID: 24369485 DOI: 10.1155/2013/958407
    Gynura bicolor (Compositae) which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water) of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116), one human breast adenocarcinoma cell line (MCF7), and one human normal colon cell line (CCD-18Co) were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay), possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor.
    Matched MeSH terms: Caco-2 Cells; HT29 Cells
  16. Tajudin TJ, Mat N, Siti-Aishah AB, Yusran AA, Alwi A, Ali AM
    PMID: 23227094 DOI: 10.1155/2012/127373
    Methanolic extract of Cynometra cauliflora whole fruit was assayed for cytotoxicity against the human promyelocytic leukemia HL-60 and the normal mouse fibroblast NIH/3T3 cell lines by using the MTT assay. The CD(50) of the extract for 72 hours was 0.9 μg/mL whereas the value for the cytotoxic drug vincristine was 0.2 μg/mL. The viability of the NIH/3T3 cells was at 80.0% when treated at 15.0 μg/mL. The extract inhibited HL-60 cell proliferation with dose dependence. AO/PI staining of HL-60 cells treated with the extract revealed that majority of cells were in the apoptotic cell death mode. Flow cytometry analysis of HL-60 cells treated at CD(50) of the extract showed that the early apoptotic cells were 31.0, 26.3 and 19.9% at 24, 48, and 72 hours treatment, respectively. The percentage of late apoptotic cells was increased from 62.0 at 24 hours to 64.1 and 70.2 at 48 and 72 hours, respectively. Meanwhile, percent of necrotic cells were 4.9, 6.6, and 8.5 at 24, 48, and 72 hours, respectively. This study has shown that the methanolic extract of C. cauliflora whole fruit was cytotoxic towards HL-60 cells and induced the cells into apoptotic cell death mode, but less cytotoxic towards NIH/3T3 cells.
    Matched MeSH terms: HL-60 Cells; NIH 3T3 Cells
  17. Chee CW, Mohd Hashim N, Abdullah I, Nor Rashid N
    Appl Biochem Biotechnol, 2024 Jun;196(6):3216-3233.
    PMID: 37642925 DOI: 10.1007/s12010-023-04690-9
    Morindone, a natural anthraquinone compound, has been reported to have significant pharmacological properties in different cancers. However, its anticancer effects in colorectal cancer (CRC) and the underlying molecular mechanisms remain obscure. In this study, RNA sequencing was used to assess the differentially expressed genes (DEGs) following morindone treatment in two CRC cell lines, HCT116 and HT29 cells. Functional enrichment analysis of overlapping DEGs revealed that negative regulation of cell development from biological processes and the MAPK signalling pathway were the most significant Gene Ontology terms and Kyoto Encyclopaedia of Genes and Genome pathway, respectively. Seven hub genes were identified among the overlapping genes, including MCM5, MCM6, MCM10, GINS2, POLE2, PRIM1, and WDHD1. All hub genes were found downregulated and involved in DNA replication fork. Among these, GINS2 was identified as the most cancer-dependent gene in both cells with better survival outcomes. Validation was performed on seven hub genes with rt-qPCR, and the results were consistent with the RNA sequencing findings. Collectively, this study provides corroboration of the potential therapeutic benefits and suitable pharmacological targets of morindone in the treatment of CRC.
    Matched MeSH terms: HT29 Cells; HCT116 Cells
  18. Ramarao KDR, Somasundram C, Razali Z, Kunasekaran W, Jin TL, Musa S, et al.
    PLoS One, 2022;17(10):e0274814.
    PMID: 36197921 DOI: 10.1371/journal.pone.0274814
    Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  19. Tee TS, Devi S, Puthucheary SD, Kautner IM
    PMID: 7777904
    Approximately 57% of clinical and 33% of poultry isolates examined produced a cytotoxin. Cytotoxic activity was detected in 25 (50%) isolates of Campylobacter of which 12 were isolated from bloody diarrhea and 9 from watery stools. The cytotoxin titers were low, ranging from 2 to 16. The crude filtrates from 50 Campylobacter isolates showed no cytotoxic effect in Vero cells, no fluid accumulation in suckling mice and no hemolytic activity.
    Matched MeSH terms: Cells, Cultured; Vero Cells
  20. Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, et al.
    Sci Rep, 2022 Jul 19;12(1):12315.
    PMID: 35853996 DOI: 10.1038/s41598-022-16671-9
    As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
    Matched MeSH terms: Pancreatic Stellate Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links