Displaying publications 1001 - 1020 of 1201 in total

Abstract:
Sort:
  1. Nassar ZD, Aisha AF, Al Suede FS, Abdul Majid AS, Abdul Majid AM
    Biol Pharm Bull, 2012;35(4):503-8.
    PMID: 22466553
    Breast cancer is the most common cancer in women, and it can metastasize very rapidly. Tumor metastasis is the primary cause of cancer deaths. In the present study, we investigated the capability of koetjapic acid, a natural triterpene, in the induction of apoptosis and the inhibition of metastasis in the breast cancer cell line (MCF 7). The effects of koetjapic acid against 4 steps of metastasis have been assessed, including cell survival, clonogenicity, migration and invasion. Koetjapic acid exhibited cytotoxic activity against MCF 7 cells with an IC(50) of 68.88±6.075 μg/mL. The mechanism of cell death was confirmed due to the induction of apoptosis machineries; early and late apoptosis-related changes were detected, including the stimulation of caspase 3/7 activities, apoptosis-related morphological changes such as membrane blebbing, chromatin condensation and DNA fragmentation. A mitochondrial apoptosis pathway was found to be involved in koetjapic acid-induced cell death induction. Moreover, at a sub-toxic dose (15 μg/mL), Koetjapic acid inhibited cell migration and invasion significantly. Finally, koetjapic acid inhibited the colony formation properties of MCF 7 significantly. These results indicate that koetjapic acid possesses significant antitumor and antimetastatic effects, and warrants further investigation.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  2. Qazzaz ME, Raja VJ, Lim KH, Kam TS, Lee JB, Gershkovich P, et al.
    Cancer Lett, 2016 Jan 28;370(2):185-97.
    PMID: 26515390 DOI: 10.1016/j.canlet.2015.10.013
    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 µM). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8-16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  3. Guo L, Zheng X, Wang E, Jia X, Wang G, Wen J
    Biomed Pharmacother, 2020 May;125:109784.
    PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784
    Doxorubicin (DOX) is an eff ;ective chemotherapeutic drug to suppress the progression of various types of tumors. However, its clinical application has been largely limited due to its potential cardiotoxicity. MicroRNAs (miRNAs) are emerged as critical regulators of cardiac injury. This study was aimed to explore the effects of irigenin (IR), as an isoflavonoid isolated from the rhizome of Belamcanda chinensis, on DOX-induced cardiotoxicity using the in vivo and in vitrostudies. The results indicated that DOX-induced fibrosis, cardiac dysfunction and injury were markedly attenuated by IR through reducing apoptosis, oxidative stress and inflammation in heart tissue samples. Importantly, DOX resulted in a remarkable decrease of miR-425 in heart tissues and cells, which was significantly rescued by IR. Receptor-interacting protein kinase 1 (RIPK1) was discovered to be a direct target of miR-425. DOX induced over-expression of RIPK1 both in vivo and in vitro, which were greatly decreased by IR. Transfection with miR-425 mimic could inhibit RIPK1 expression, whereas reducing miR-425 increased RIPK1 expression levels. In parallel to miR-425 over-expression, RIPK1 knockdown could attenuate apoptosis, reactive oxygen species (ROS) production and inflammation in HL-1 cells. However, over-expression of RIPK1 markedly abolished miR-425 mimic-induced apoptosis, ROS accumulation and inflammatory response in DOX-exposed cells. Herein, miR-425 could ameliorate cardiomyocyte injury through directly targeting RIPK1. Furthermore, activation of miR-425 by IR markedly improved DOX-induced cardiotoxicity, and therefore IR could be considered as a promising therapeutic agent for the treatment of cardiac injury.
    Matched MeSH terms: Antineoplastic Agents/adverse effects
  4. Jaganathan SK, Supriyanto E, Mandal M
    World J Gastroenterol, 2013 Nov 21;19(43):7726-34.
    PMID: 24282361 DOI: 10.3748/wjg.v19.i43.7726
    AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells.

    METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.

    RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.

    CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  5. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  6. Chien SY, Hsu CH, Lin CC, Chuang YC, Lo YS, Hsi YT, et al.
    Environ Toxicol, 2017 Aug;32(8):2085-2092.
    PMID: 28383207 DOI: 10.1002/tox.22423
    Nasopharyngeal carcinoma (NPC), a tumor arising from epithelial cells that cover the surface and line the nasopharynx, is a rare malignancy worldwide but is prevalent in certain geographical areas, such as Southern Asia (Taiwan, Hong Kong, Singapore, Malaysia, and Southern China) and North Africa. Despite advances in diagnostic techniques and improvements in treatment modalities, the prognosis of NPC remains poor. Therefore, an effective chemotherapy regimen that enhances tumor sensitivity to chemotherapeutics is urgently required. Nimbolide, derived from Azadirachta indica, has a wide range of beneficial effects, including anti-inflammatory and anticancer properties. The present study evaluated the antitumor activity of nimbolide in NPC cells and its underlying mechanisms. Our results revealed that the treatment of HONE-1 cells with nimbolide potently inhibited cell viability. Moreover, nimbolide led to cell cycle arrest, which subsequently activated caspase-3, -8, and -9 and poly (ADP-ribose) polymerase to induce cell apoptosis. Moreover, nimbolide induced Bik, Bax, and t-Bid expression in HONE-1 cells. The results indicated that nimbolide induces apoptosis through the modulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Nimbolide induces apoptosis in human NPC cells and is a potential chemopreventive agent against NPC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2085-2092, 2017.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  7. Guo W, Wu X, Li Y, Gao J, Wang F, Jin Y, et al.
    J Drug Target, 2020 01;28(1):41-45.
    PMID: 30943812 DOI: 10.1080/1061186X.2019.1601199
    Purpose: The present study evaluated biochemical as well as biophysical mechanisms behind the synergistic effects of curcumin and resveratrol during prostate carcinogenesis.Methods: The rats were segregated into five groups that included normal control, 3,2'-dimethyl-4-aminobiphenyl (DMAB)treated, DMAB + curcumin treated, DMAB + resveratrol-treated and DMAB + curcumin + resveratrol-treated.Results: The DMAB treatment resulted in a significant increase in the levels of lipid peroxidation (LPO) in DMAB treated rats. Also, significant changes were recorded in the enzyme activities of both drug metabolising enzyme and antioxidant enzymes after DMAB treatment. Further, radiorespirometric studies showed a significant increase in the 14C-glucose turnover as well as 14C-glucose uptake in the prostate slices of DMAB treated rats. Moreover, a significant rise in cell proliferation was confirmed indirectly by enhanced uptake of 3H-thymidine in the prostate slices of DMAB treated rats. Interestingly, combined treatment of curcumin and resveratrol to DMAB treated animals resulted in a significant decrease in lipid peroxidation, 14C glucose uptakes/turnover and 3H-thymidine uptake in the DMAB treated rats. Besides this, curcumin and resveratrol in combination significantly modulated biochemical indices including drug-metabolising enzymes; antioxidant enzymes in DMBA treated rats.Conclusion: The study, therefore, concludes that the combination of curcumin and resveratrol holds strong modulatory potential against prostate carcinogenesis.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  8. Hariono M, Rollando R, Yoga I, Harjono A, Suryodanindro A, Yanuar M, et al.
    Molecules, 2021 Mar 08;26(5).
    PMID: 33800366 DOI: 10.3390/molecules26051464
    In our previous work, the partitions (1 mg/mL) of Ageratum conyzoides (AC) aerial parts and Ixora coccinea (IC) leaves showed inhibitions of 94% and 96%, respectively, whereas their fractions showed IC50 43 and 116 µg/mL, respectively, toward Matrix Metalloproteinase9 (MMP9), an enzyme that catalyzes a proteolysis of extracellular matrix. In this present study, we performed IC50 determinations for AC n-hexane, IC n-hexane, and IC ethylacetate partitions, followed by the cytotoxicity study of individual partitions against MDA-MB-231, 4T1, T47D, MCF7, and Vero cell lines. Successive fractionations from AC n-hexane and IC ethylacetate partitions led to the isolation of two compounds, oxytetracycline (OTC) and dioctyl phthalate (DOP). The result showed that AC n-hexane, IC n-hexane, and IC ethylacetate partitions inhibit MMP9 with their respective IC50 as follows: 246.1 µg/mL, 5.66 µg/mL, and 2.75 × 10-2 µg/mL. Toward MDA-MB-231, 4T1, T47D, and MCF7, AC n-hexane demonstrated IC50 2.05, 265, 109.70, and 2.11 µg/mL, respectively, whereas IC ethylacetate showed IC50 1.92, 57.5, 371.5, and 2.01 µg/mL, respectively. The inhibitions toward MMP9 by OTC were indicated by its IC50 18.69 µM, whereas DOP was inactive. A molecular docking study suggested that OTC prefers to bind to PEX9 rather than its catalytic domain. Against 4T1, OTC showed inhibition with IC50 414.20 µM. In conclusion, this study furtherly supports the previous finding that AC and IC are two herbals with potential to be developed as triple-negative anti-breast cancer agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  9. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  10. Lua PL, Salihah NZ, Mazlan N
    Malays J Nutr, 2012 Aug;18(2):173-84.
    PMID: 24575665 MyJurnal
    Nutritional decline is typically accepted as a consequent of the course of treatment for cancer. This study aimed to (1) assess body weight status and dietary intake of breast cancer patients on chemotherapy and (2) to correlate Body Mass Index (BMI), energy and protein intake with health-related quality of life (HRQoL) profile.
    Matched MeSH terms: Antineoplastic Agents/adverse effects*
  11. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  12. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  13. Chung FF, Tan PF, Raja VJ, Tan BS, Lim KH, Kam TS, et al.
    Sci Rep, 2017 02 15;7:42504.
    PMID: 28198434 DOI: 10.1038/srep42504
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  14. Lee BK, Tiong KH, Chang JK, Liew CS, Abdul Rahman ZA, Tan AC, et al.
    BMC Genomics, 2017 01 25;18(Suppl 1):934.
    PMID: 28198666 DOI: 10.1186/s12864-016-3260-7
    BACKGROUND: The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously.

    RESULTS: We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC50) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control.

    CONCLUSIONS: DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

    Matched MeSH terms: Antineoplastic Agents/pharmacology
  15. Dai X, Wang L, Deivasigamni A, Looi CY, Karthikeyan C, Trivedi P, et al.
    Oncotarget, 2017 Feb 21;8(8):12831-12842.
    PMID: 28086233 DOI: 10.18632/oncotarget.14606
    A prior screening programme carried out using MTT assay by our group identified a series of novel benzimidazole derivatives, among which Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC) showed highest anticancer efficacy compared to that of chemotherapeutic agent, cisplatin. In the present study, we found that MBIC inhibited cell viability in different hepatocellular carcinoma (HCC) cell lines without exerting significant cytotoxic effects on normal liver cells. Annexin V-FITC/PI flow cytometry analysis and Western blotting results indicated that MBIC can induce apoptosis in HCC cells, which was found to be mediated through mitochondria associated proteins ultimately leading to the activation of caspase-3. The exposure to MBIC also resulted in remarkable impairment of HCC cell migration and invasion. In addition, treatment with MBIC led to a rapid generation of reactive oxygen species (ROS) and substantial activation of c-Jun-N-terminal kinase (JNK). The depletion of ROS by N-Acetyl cysteine (NAC) partially blocked MBIC-induced apoptosis and JNK activation in HCC cells. Finally, MBIC significantly inhibited tumor growth at a dose of 25 mg/kg in an orthotopic HCC mouse model. Taken together, these results demonstrate that MBIC may inhibit cell proliferation via ROS-mediated activation of the JNK signaling cascade in HCC cells.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  16. Tay CG, Lee VWM, Ong LC, Goh KJ, Ariffin H, Fong CY
    Pediatr Blood Cancer, 2017 Aug;64(8).
    PMID: 28139029 DOI: 10.1002/pbc.26471
    BACKGROUND: Vincristine, an essential component of childhood acute lymphoblastic leukaemia (ALL) therapeutic protocols, is associated with dose-dependent neurotoxicity, but its long-term morbidity in treated children has not been clearly elucidated. The aim of this study is to determine the prevalence of vincristine-induced peripheral neuropathy (VIPN) among Malaysian childhood ALL survivors and its impact on motor function and quality of life.

    PROCEDURE: Survivors of childhood ALL aged 4-18 years who had completed chemotherapy for 2 years or more were evaluated for VIPN using both the clinical Total Neuropathy Score (cTNS) and nerve conduction studies. Motor function and quality of life of the survivors were assessed via the Bruininks-Oseretsky Test of Motor Proficiency Brief Form, Second Edition (BOT-2 Brief Form) and the Paediatric Quality of Life version 4.0 Generic Core Scales (PedsQL4.0) questionnaire, respectively.

    RESULTS: One hundred and one survivors with a duration of follow-up ranging from 2.0 to 10.3 years were recruited. Twenty-seven (26.7%) had abnormal cTNS scores and 69 (68.3%) had electrophysiological evidence of neuropathy. Of these, 16 (15.8%) had combined clinical and electrophysiological neuropathy (VIPN). Those previously treated on the intermediate- or high-risk treatment stratification arms had a higher risk of developing VIPN (67.3 vs. 32.7%; odds ratio [OR]: 9.06, 95% confidence interval [CI]: 1.14-71.86; P = 0.014). Survivors with VIPN had significantly lower quality of life scores in the physical (P = 0.024) and social domains (P = 0.039) compared with peers without VIPN, but no association with poorer motor function was observed.

    CONCLUSIONS: Sixteen percent of ALL survivors had VIPN. VIPN should be increasingly recognised as a late effect of chemotherapy, as it significantly affects physical and social function quality of life.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects*
  17. Sinniah D, White JC, Omar A, Chua CP
    Cancer, 1978 Oct;42(4):1970-5.
    PMID: 280417 DOI: 10.1002/1097-0142%28197810%2942%3A4<1970%3A%3AAID-
    A review of acute childhood leukemia in the University Hospital, Kuala Lumpur reveals no significant differences in either the epidemiological or clinical features between Malaysian and Caucasian children. BCG does not appear to have conferred any protection against the occurrence of leukemia. With the introduction of total therapy 4 of 10 patients with good prognostic features and 3 of 15 patients with poor prognostic features have survived 3 years. Prognosis appears to correlate with adopted clinical criteria.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  18. Khan MZI, Zahra SS, Ahmed M, Fatima H, Mirza B, Haq IU, et al.
    Nat Prod Res, 2019 Jul;33(14):2099-2104.
    PMID: 29873254 DOI: 10.1080/14786419.2018.1482551
    Ipomoea carnea Jacq. is an important folklore medicinal plant, assessed for its underexplored biological potential. Antioxidant, cytotoxic, antiproliferative and polyphenolic profile of whole plant was evaluated using various techniques. Maximum extract recovery (29% w/w), phenolic [13.54 ± 0.27 μg GAE/mg dry weight (DW)] and flavonoid (2.11 ± 0.10 μg QE /mg DW) content were recorded in methanol-distilled water (1:1) flower extract. HPLC-DAD analysis quantified substantial amount of six different polyphenols ranging from 0.081 to 37.95 μg/mg extract. Maximum total antioxidant and reducing potential were documented in methanol-distilled water and acetone-distilled water flower extracts (42.62 ± 0.47 and 24.38 ± 0.39 μg AAE/mg DW) respectively. Ethanol-chloroform root extract manifested highest free radical scavenging (IC50 of 61.22 μg/mL) while 94.64% of the extracts showed cytotoxicity against brine shrimps. Ethanol leaf extract exhibited remarkable activity against THP-1 cell line (IC50 = 8 ± 0.05 μg/mL) and protein kinases (31 mm phenotype bald zone).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  19. Jabir RS, Ho GF, Annuar MABA, Stanslas J
    Biomarkers, 2018 Mar;23(2):142-146.
    PMID: 28554261 DOI: 10.1080/1354750X.2017.1334152
    CONTEXT: Rash and oral mucositis are major non-haematological adverse events (AEs) of docetaxel, in addition to fatigue, nausea, vomiting and diarrhoea, which restrict the use of the drug in cancer therapy. Alpha-1-acid glycoprotein (AAG) is an acute phase reactant glycoprotein and is a primary carrier of docetaxel in the blood. Docetaxel has extensive binding (>98%) to plasma proteins such as AAG, lipoproteins and albumin.

    OBJECTIVE: To study the association between plasma AAG level and non-haematological AEs of docetaxel in Malaysian breast cancer patients of three major ethnic groups (Malays, Chinese and Indians).

    MATERIALS AND METHODS: One hundred and twenty Malaysian breast cancer patients receiving docetaxel as single agent chemotherapy were investigated for AAG plasma level using enzyme-linked immunosorbent assay technique. Toxicity assessment was determined using Common Terminology Criteria of Adverse Events v4.0. The association between AAG and toxicity were then established.

    RESULTS: There was interethnic variation of plasma AAG level; it was 182 ± 85 mg/dl in Chinese, 237 ± 94 mg/dl in Malays and 240 ± 83 mg/dl in Indians. It was found that low plasma levels of AAG were significantly associated with oral mucositis and rash.

    CONCLUSIONS: This study proposes plasma AAG as a potential predictive biomarker of docetaxel non-haematological AEs namely oral mucositis and rash.

    Matched MeSH terms: Antineoplastic Agents/adverse effects
  20. Velaithan V, Okuda KS, Ng MF, Samat N, Leong SW, Faudzi SM, et al.
    Invest New Drugs, 2017 04;35(2):166-179.
    PMID: 28058624 DOI: 10.1007/s10637-016-0423-y
    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27KIP1. Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links