METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.
RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.
CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.
RESULTS: We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC50) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control.
CONCLUSIONS: DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.
PROCEDURE: Survivors of childhood ALL aged 4-18 years who had completed chemotherapy for 2 years or more were evaluated for VIPN using both the clinical Total Neuropathy Score (cTNS) and nerve conduction studies. Motor function and quality of life of the survivors were assessed via the Bruininks-Oseretsky Test of Motor Proficiency Brief Form, Second Edition (BOT-2 Brief Form) and the Paediatric Quality of Life version 4.0 Generic Core Scales (PedsQL4.0) questionnaire, respectively.
RESULTS: One hundred and one survivors with a duration of follow-up ranging from 2.0 to 10.3 years were recruited. Twenty-seven (26.7%) had abnormal cTNS scores and 69 (68.3%) had electrophysiological evidence of neuropathy. Of these, 16 (15.8%) had combined clinical and electrophysiological neuropathy (VIPN). Those previously treated on the intermediate- or high-risk treatment stratification arms had a higher risk of developing VIPN (67.3 vs. 32.7%; odds ratio [OR]: 9.06, 95% confidence interval [CI]: 1.14-71.86; P = 0.014). Survivors with VIPN had significantly lower quality of life scores in the physical (P = 0.024) and social domains (P = 0.039) compared with peers without VIPN, but no association with poorer motor function was observed.
CONCLUSIONS: Sixteen percent of ALL survivors had VIPN. VIPN should be increasingly recognised as a late effect of chemotherapy, as it significantly affects physical and social function quality of life.
OBJECTIVE: To study the association between plasma AAG level and non-haematological AEs of docetaxel in Malaysian breast cancer patients of three major ethnic groups (Malays, Chinese and Indians).
MATERIALS AND METHODS: One hundred and twenty Malaysian breast cancer patients receiving docetaxel as single agent chemotherapy were investigated for AAG plasma level using enzyme-linked immunosorbent assay technique. Toxicity assessment was determined using Common Terminology Criteria of Adverse Events v4.0. The association between AAG and toxicity were then established.
RESULTS: There was interethnic variation of plasma AAG level; it was 182 ± 85 mg/dl in Chinese, 237 ± 94 mg/dl in Malays and 240 ± 83 mg/dl in Indians. It was found that low plasma levels of AAG were significantly associated with oral mucositis and rash.
CONCLUSIONS: This study proposes plasma AAG as a potential predictive biomarker of docetaxel non-haematological AEs namely oral mucositis and rash.