Displaying publications 1001 - 1020 of 3987 in total

Abstract:
Sort:
  1. Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N
    Appl Microbiol Biotechnol, 2019 Jul;103(13):5131-5142.
    PMID: 31101941 DOI: 10.1007/s00253-019-09879-9
    The system of rice intensification (SRI) is an agroecological approach to rice cultivation that seeks to create optimal conditions for healthy plant growth by minimizing inter-plant competition, transplanting widely spaced young single seedlings, and optimizing favorable soil conditions with organic amendments, increased soil aeration by weeding, and controlled water management. These practices improve rice plant growth with yields up to three times more than with conventional cultivation methods, and increase crop resilience under biotic and abiotic stresses. This review discusses the roles of beneficial microbes in improving rice plant growth, yield, and resilience when SRI practices are used, and how these modifications in plant, soil, water, and nutrient management affect the populations and diversity of soil microorganisms. Mechanisms whereby symbiotic microbes support rice plants' growth and performance are also discussed.
    Matched MeSH terms: Water
  2. Munksgaard NC, Kurita N, Sánchez-Murillo R, Ahmed N, Araguas L, Balachew DL, et al.
    Sci Rep, 2019 10 08;9(1):14419.
    PMID: 31595004 DOI: 10.1038/s41598-019-50973-9
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.
    Matched MeSH terms: Water Resources
  3. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: Water Purification/methods*; Waste Water/chemistry*
  4. Praveena SM, Cheema MS, Guo HR
    Ecotoxicol Environ Saf, 2019 Apr 15;170:699-707.
    PMID: 30580164 DOI: 10.1016/j.ecoenv.2018.12.048
    Generally, non-nutritive artificial sweeteners are widely utilized as sugar substitute in various applications. With various applications, non-nutritive artificial sweeteners are now being recognized as emerging contaminants with high water persistence and are chemically stable in environment. Although non-nutritive artificial sweeteners were documented on their occurrence in environment, yet their potential impacts to environment and human health remain ambiguous. Therefore, this review was prepared to provide a more comprehensive insight of non-nutritive artificial sweeteners in environment matrixes by highlighting special concerns on human health and environmental risks. Precisely, this review monitors the exploration of non-nutritive artificial sweeteners occurrences as an emerging contaminants in environment worldwide and their associated risks to human as well as environment. At present, there are a total of 24 non-nutritive artificial sweeteners' studies with regards to their occurrence in the environment from 38 locations globally, spanning across Europe including United Kingdoms, Canada, United States and Asia. Overall, the quantitative findings suggested that the occurrence of non-nutritive artificial sweeteners is present in surface water, tap water, groundwater, seawater, lakes and atmosphere. Among these environmental matrixes, surface water was found as the most studied matrix involving non-nutritive artificial sweeteners. However, findings on non-nutritive artificial sweeteners impacts on human health and environment are limited to understanding its overall potential impacts and risks. Additionally, this review also serves as a framework for future monitoring plans and environmental legislative to better control these emerging contaminants in environment.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Drinking Water/chemistry*
  5. WAN HANNA MELINI WAN MOHTAR, SITI AMINAH BASSA, MOJTABA PORHEMMAT
    Sains Malaysiana, 2017;46:685-693.
    Grain size spectrum and textural parameters for the fluvial sediment bed in seven tropical rivers of Kelantan, Malaysia are presented in this article. The samples were collected from six tributaries to the main Sungai Kelantan spanning approximately 248 km stretch of water streams. Sand or gravel dominated river was identified for each river using the sediment composition analysis. Textural pattern shows complicated profiles of mean size and no consistent decreasing grain size and gradation parameter were observed towards the downstream flow. Most of the samples fall under the category of either very poorly sorted or poorly sorted and has very platykurtic kurtosis distributions. CM diagram (C=one percentile in microns and M = median grain size in microns) suggested that the deposition of fine-grained sediment for samples with median grain size d50 <1 mm are either by rolling, rolling and saltation or saltation and suspension.
    Matched MeSH terms: Water
  6. Daramola J, Ekhwan TM, Mokhtar J, Lam KC, Adeogun GA
    Heliyon, 2019 Jul;5(7):e02106.
    PMID: 31372557 DOI: 10.1016/j.heliyon.2019.e02106
    Over the years, sedimentation has posed a great danger to the storage capacity of hydropower reservoirs. Good understanding of the transport system and hydrological processes in the dam is very crucial to its sustainability. Under optimal functionality, the Shiroro dam in Northern Nigeria can generate ∼600 MW, which is ideally sufficient to power about 404,000 household. Unfortunately, there have not been reliable monitoring measures to assess yield in the upstream, where sediments are sourced into the dam. In this study, we applied the Soil and Water Assessment Tool (SWAT) to predict the hydrological processes, the sediment transport mechanism and sediment yield between 1990 and 2018 in Kaduna watershed (32,124 km2) located upstream of the dam. The model was calibrated and validated using observed flow and suspended sediment concentration (SSC) data. Performance evaluation of the model was achieved statistically using Nash-Sutcliffe (NS), coefficient of determination (r2) and percentage of observed data (p-factor). SWAT model evaluation using NS (0.71), r2 (0.80) and p-factors of 0.86 suggests that the model performed satisfactorily for streamflow and sediment yield predictions. The model identified the threshold depth of water (GWQMN.gw) and base flow (ALPHA_BF.gw) as the most sensitive parameters for streamflow and sediment yield estimation in the watershed. Our finding showed that an estimated suspended sediment yield of about 84.1 t/ha/yr was deposited within the period under study. Basins 67, 71 and 62 have erosion prone area with the highest sediment values of 79.4, 75.1 and 73.8 t/h respectively. Best management practice is highly recommended for the dam sustainability, because of the proximity of erosion-prone basins to the dam.
    Matched MeSH terms: Water
  7. Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL
    J Environ Manage, 2019 Dec 01;251:109618.
    PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618
    This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
    Matched MeSH terms: Water
  8. Khan T, Binti Abd Manan TS, Isa MH, Ghanim AAJ, Beddu S, Jusoh H, et al.
    Molecules, 2020 Jul 17;25(14).
    PMID: 32708928 DOI: 10.3390/molecules25143263
    This research optimized the adsorption performance of rice husk char (RHC4) for copper (Cu(II)) from an aqueous solution. Various physicochemical analyses such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, Brunauer-Emmett-Teller (BET) surface area analysis, bulk density (g/mL), ash content (%), pH, and pHZPC were performed to determine the characteristics of RHC4. The effects of operating variables such as the influences of aqueous pH, contact time, Cu(II) concentration, and doses of RHC4 on adsorption were studied. The maximum adsorption was achieved at 120 min of contact time, pH 6, and at 8 g/L of RHC4 dose. The prediction of percentage Cu(II) adsorption was investigated via an artificial neural network (ANN). The Fletcher-Reeves conjugate gradient backpropagation (BP) algorithm was the best fit among all of the tested algorithms (mean squared error (MSE) of 3.84 and R2 of 0.989). The pseudo-second-order kinetic model fitted well with the experimental data, thus indicating chemical adsorption. The intraparticle analysis showed that the adsorption process proceeded by boundary layer adsorption initially and by intraparticle diffusion at the later stage. The Langmuir and Freundlich isotherm models interpreted well the adsorption capacity and intensity. The thermodynamic parameters indicated that the adsorption of Cu(II) by RHC4 was spontaneous. The RHC4 adsorption capacity is comparable to other agricultural material-based adsorbents, making RHC4 competent for Cu(II) removal from wastewater.
    Matched MeSH terms: Water/chemistry*; Water Pollutants, Chemical/chemistry
  9. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
    Matched MeSH terms: Water Resources
  10. Nordin NA, Abdul Rahman N, Abdullah AH
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640766 DOI: 10.3390/molecules25133081
    Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  11. Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, et al.
    Environ Geochem Health, 2021 Feb;43(2):1069-1088.
    PMID: 32940833 DOI: 10.1007/s10653-020-00712-1
    Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
    Matched MeSH terms: Water Pollutants, Chemical/analysis; Water Quality/standards
  12. Kondo T, Sakai N, Yazawa T, Shimizu Y
    Sci Total Environ, 2021 Jun 20;774:145075.
    PMID: 33609845 DOI: 10.1016/j.scitotenv.2021.145075
    The Soil and Water Assessment Tool (SWAT) ecohydrological model was utilized to simulate fecal contamination in the 1937 km2 Selangor River Watershed in Malaysia. The watershed conditions posed considerable challenges owing to data scarcity and tropical climate conditions, which are very different from the original conditions that SWAT was developed and tested for. Insufficient data were compensated by publicly available data (e.g., land cover, soil, and weather) to run SWAT. In addition, field monitoring and interviews clarified representative situations of pollution sources and loads, which were used as input for the model. Model parameters determined by empirical analyses in the USA (e.g., surface runoff, evapotranspiration, and temperature adjustment for bacteria die-off) are thoroughly discussed. In particular, due consideration was given to tropical climate characteristics such as intense rainfall, high potential evapotranspiration, and high temperatures throughout the year. As a result, the developed SWAT successfully simulated fecal contamination ranging several orders of magnitude along with its spatial distribution (i.e., Nash-Sutcliffe Efficiency (NSE) = 0.64, Root Mean Square Error-Observations Standard Deviation Ratio (RSR) = 0.64 at six mainstem sites, and NSE = 0.67 and RSR = 0.57 at 12 major tributaries). Moreover, mitigation countermeasures for future worsening of fecal contamination (i.e., E.coli concentration > 20,000 CFU/100 mL for 690 days during nine years at a raw water intake point for Kuala Lumpur [KL] residents) were analyzed through scenario simulations, thereby contributing to discussing effective watershed management. The results propose improving decentralized sewage treatment systems and treating chicken manure with effective microorganisms in order to guarantee water safety for KL residents (i.e., E.coli concentrations <20,000 CFU/100 mL throughout the period, considering Malaysian standards). Accordingly, this study verified the applicability of SWAT to simulate fecal contamination in areas that are difficult to model and suggests solutions for watershed management based on quantitative evidence.
    Matched MeSH terms: Water
  13. Foo FK, Othman AS, Lee CY
    J Insect Physiol, 2011 Nov;57(11):1495-500.
    PMID: 21840313 DOI: 10.1016/j.jinsphys.2011.07.019
    The majority of true parasitoids manipulate their host's physiology for their own benefit. In this study, we documented the physiological changes that occurred in major soldiers of the subterranean termite Macrotermes gilvus (Hagen) (Isoptera: Termitidae) parasitized by the koinobiont larval endoparasitoid Misotermes mindeni Disney and Neoh (Diptera: Phoridae). We compared the metabolic rate, body water content, body water loss rate, cuticular permeability, and desiccation tolerance between parasitized and unparasitized major soldiers. The metabolic rate of parasitized hosts was significantly higher than that of unparasitized termites. Mean total body water content of parasitized major soldiers (64.73±3.26%) was significantly lower than that of unparasitized termites (71.99±2.23%). Parasitized hosts also had significantly lower total body water loss rates (5.72±0.06%/h) and higher cuticular permeability (49.37±11.26 μg/cm/h/mmHg) than unparasitized major soldiers (6.75±0.16%/h and 60.76±24.98 μg/cm/h/mmHg, respectively). Parasitized major soldiers survived almost twice as long as unparasitized termites (LT(50)=6.66 h and LT(50)=3.40 h, respectively) and they had significantly higher tolerance to water loss compared to unparasitized termites (45.28±6.79% and 32.84±7.69%, respectively). Body lipid content in parasitized hosts (19.84±6.27%) was significantly higher than that of unparasitized termites (6.17±7.87%). Finally, parasitized hosts had a significantly lower percentage of cuticular water content than unparasitized major soldiers (10.97±1.84% and 13.17±2.21%, respectively). Based on these data, we conclude that the parasitism-induced physiological changes in the host are beneficial to the parasitoids as the alterations can clearly increase the parasite's chances of survival when exposed to extreme environmental conditions and ensure that the parasitoids are able to complete their larval development successfully before the host dies.
    Matched MeSH terms: Water/metabolism; Water-Electrolyte Balance*
  14. Sekine M, Yoshida A, Akizuki S, Kishi M, Toda T
    Water Sci Technol, 2020 Sep;82(6):1070-1080.
    PMID: 33055397 DOI: 10.2166/wst.2020.153
    A novel coupling process using an aerobic bacterial reactor with nitrification and sulfur-oxidization functions followed by a microalgal reactor was proposed for simultaneous biogas desulfurization and anaerobic digestion effluent (ADE) treatment. ADE nitrified by bacteria has a potential to be directly used as a culture medium for microalgae because ammonium nitrogen, including inhibitory free ammonia (NH3), has been converted to harmless NO3-. To demonstrate this hypothesis, Chlorella sorokiniana NIES-2173, which has ordinary NH3 tolerance; that is, 1.6 mM of EC50 compared with other species, was cultivated using untreated/treated ADE. Compared with the use of a synthetic medium, when using ADE with 1-10-fold dilutions, the specific growth rate and growth yield maximally decreased by 44% and 88%, respectively. In contrast, the algal growth using undiluted ADE treated by nitrification-desulfurization was almost the same as with using synthetic medium. It was also revealed that 50% of PO43- and most metal concentrations of ADE decreased following nitrification-desulfurization treatment. Moreover, upon NaOH addition for pH adjustment, the salinity increased to 0.66%. The decrease in metals mitigates the bioconcentration of toxic heavy metals from wastewater in microalgal biomass. Meanwhile, salt stress in microalgae and limiting nutrient supplementation, particularly for continuous cultivation, should be of concern.
    Matched MeSH terms: Waste Water
  15. Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL
    Environ Pollut, 2021 Jan 15;269:116236.
    PMID: 33333449 DOI: 10.1016/j.envpol.2020.116236
    Microalgae have become imperative for biological wastewater treatment. Its capability in biological purification of wastewaters from different origins while utilizing wastewater as the substrate for growth has manifest great potentials as a sustainable and economical wastewater treatment method. The wastewater grown microalgae have also been remarked in research to be a significant source of value-added bioproducts and biomaterial. This paper highlights the multifaceted roles of microalgae in wastewater treatment from the extent of microalgal bioremediation function to environmental amelioration with the involvement of microalgal biomass productivity and carbon dioxide fixation. Besides, the uptake mechanism of microalgae in wastewater treatment was discussed in detail with illustrations for a comprehensive understanding of the removal process of undesirable substances. The performance of different microalgae species in the uptake of various substances was studied and summarized in this review. The correlation of microalgal treatment efficacy with various algal strain types and the bioreactors harnessed for cultivation systems was also discussed. Studies on the alternatives to conventional wastewater treatment processes and the integration of microalgae with accordant wastewater treatment methods are presented. Current research on the biological and technical approaches for the modification of algae-based wastewater system and the maximization of biomass production is also reviewed and discussed. The last portion of the review is dedicated to the assertion of challenges and future perspectives on the development of microalgae-based wastewater treatment technology. This review serves as a useful and informative reference for readers regarding the multifaceted roles of microalgae in the application of wastewater biotreatment with detailed discussion on the uptake mechanism.
    Matched MeSH terms: Waste Water
  16. Nasser SM, Khandaker MU, Bradley DA, Isinkaye MO
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):422-425.
    PMID: 31038706 DOI: 10.1093/rpd/ncz088
    The present study concerns measurement of the radon concentration in drinking and irrigation waters obtained from the eastern part of Oman, in particular in regard to water quality assessment of the region. The samples were collected from different places covering most types of water sources in the region. A passive and time-integrated track etch detector (LR-115 type II) combined with a high-resolution optical microscope has been used to obtain the radon concentration in the studied samples. Values of dissolved radon in water varied among the water sources; the highest concentration of radon was found to be 363 Bq m-3 in a drinking water sample while well water used for irrigation showed the lowest value, at 140 Bq m-3. Measured data for all water sources are below the permissible limit of 11.1 kBq m-3 recommended by the US-EPA. Annual effective doses for the studied samples were in the range 0.38-0.99 μSv y-1 which is significantly less than the action level recommended by the WHO (0.1 mSv y-1), indicating that the water sources in the Jalan BBH region of Oman are safe to use. The obtained data may serve as a reference for any future radiological study of the waterbody of this region.
    Matched MeSH terms: Water Pollutants, Radioactive/analysis*; Drinking Water/analysis*
  17. Yeo CI, Tan YS, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1159-64.
    PMID: 26594396 DOI: 10.1107/S2056989015016655
    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).
    Matched MeSH terms: Water
  18. Chidan Kumar CS, Sim AJ, Ng WZ, Chia TS, Loh WS, Kwong HC, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 7):927-931.
    PMID: 28775853 DOI: 10.1107/S2056989017007836
    The asymmetric unit of the title compound, C15H15N3O3·0.5H2O, comprises two 2-{[(4-iminiumyl-3-methyl-1,4-di-hydro-pyridin-1-yl)meth-yl]carbamo-yl}benzoate zwitterions (A and B) and a water mol-ecule. The dihedral angles between the pyridine and phenyl rings in the zwitterions are 53.69 (10) and 73.56 (11)° in A and B, respectively. In the crystal, mol-ecules are linked by N-H⋯O, O-H⋯O, C-H⋯O and C-H⋯π(ring) hydrogen bonds into a three-dimensional network. The crystal structure also features π-π inter-actions involving the centroids of the pyridine and phenyl rings [centroid-centroid distances = 3.5618 (12) Å in A and 3.8182 (14) Å in B].
    Matched MeSH terms: Water
  19. Johnson A, Mbonu J, Hussain Z, Loh WS, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):m139-40.
    PMID: 26090171 DOI: 10.1107/S2056989015010014
    The asymmetric unit of the title compound, [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 Co(II) ions (one anionic complex and one half cationic complex) and one water mol-ecule. In the cationic complex, the Co(II) atom is located on an inversion centre and is coordinated by two triazolium cations and four water mol-ecules, adopting an octa-hedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water mol-ecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the Co(II) ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-di-carboxyl-ate anions, exhibiting a slightly distorted octa-hedral coordination geometry in which the mean plane of the two pyridine-2,6-di-carboxyl-ate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, mol-ecules are linked into a three-dimensional network via C-H⋯O, C-H⋯N, O-H⋯O and N-H⋯O hydrogen bonds.
    Matched MeSH terms: Water
  20. Mokhtaruddin NS, Ravoof TB, Tahir MI, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Apr 1;71(Pt 4):o253-4.
    PMID: 26029441 DOI: 10.1107/S2056989015005034
    In the title hydrate, C9H12N4S·H2O (systematic name: 3-methyl-1-{(E)-[(3-methyl-pyridin-2-yl)methyl-idene]amino}-thio-urea monohydrate), a small twist is noted between the pyridine ring and the rest of the organic mol-ecule [dihedral angle = 6.96 (5)°]. The imine and pyridine N atoms are syn, and the amine H atoms are anti. The latter arrangement allows for the formation of an intra-molecular N-H⋯N(imine) hydrogen bond. Both the N-bonded H atoms form hydrogen bonds to symmetry-related water mol-ecules, and the latter forms O-H hydrogen bonds with the pyridine N and thione S atoms. These inter-actions lead to supra-molecular layers that stack along the a-axis direction with no specific inter-actions between them.
    Matched MeSH terms: Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links