Displaying publications 1141 - 1160 of 8208 in total

Abstract:
Sort:
  1. Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JS, et al.
    Pharmacogenomics, 2024;25(5-6):259-288.
    PMID: 38884938 DOI: 10.1080/14622416.2024.2344430
    This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
    Matched MeSH terms: Autoimmune Diseases/genetics; Graft Rejection/genetics; IMP Dehydrogenase/genetics; Polymorphism, Genetic/genetics
  2. Alauddin H, Kamarudin K, Loong TY, Azma RZ, Ithnin A, Jalil N, et al.
    Hemoglobin, 2018 Jul;42(4):247-251.
    PMID: 30623696 DOI: 10.1080/03630269.2018.1528985
    Nondeletional α-globin mutations are known to cause more serious clinical effects than deletional ones. A rare IVS-I-1 (G>A) (HBA2: c.95+1G>A) donor splice site mutation interferes with normal splicing of pre mRNA and results in activation of a cryptic splice site as well as a frameshift mutation. Hb Adana [HBA2: c.179G>A (or HBA1)] is a highly unstable variant hemoglobin (Hb) resulting from a mutation at codon 59 on the HBA2 or HBA1 gene, recognized to cause severe α-thalassemia (α-thal) syndromes. We report a unique case of compound heterozygosity for these two mutations in a 9-year-old boy who presented with a Hb level of 5.3 g/dL and hepatomegaly at the age of 15 months. He required regular blood transfusions in view of a Hb level of <7.0 g/dL and failure to thrive. He had thalassemic red cell indices and peripheral blood film. The Hb electrophoresis only showed a raised Hb F level (3.3%) and a pre run peak but the Hb H inclusion test was negative. His father had thalassemic red cell indices but a normal Hb level. His mother had almost normal Hb levels and red cell indices. Hb Adana involving the HBA2 gene was detected by mutiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in the proband and his father. DNA sequencing of the HBA2 gene confirmed the IVS-I-1 mutation in the proband and his mother. This case highlighted the unique interaction of the IVS-I-1 mutation with Hb Adana in a young Malay boy presenting with transfusion-dependent α-thal.
    Matched MeSH terms: Hemoglobin A2/genetics*; Hemoglobins, Abnormal/genetics*; alpha-Thalassemia/genetics*; alpha-Globins/genetics
  3. Mienda BS
    J Biomol Struct Dyn, 2017 Jul;35(9):1863-1873.
    PMID: 27251747 DOI: 10.1080/07391102.2016.1197153
    Genome-scale metabolic models (GEMs) have been developed and used in guiding systems' metabolic engineering strategies for strain design and development. This strategy has been used in fermentative production of bio-based industrial chemicals and fuels from alternative carbon sources. However, computer-aided hypotheses building using established algorithms and software platforms for biological discovery can be integrated into the pipeline for strain design strategy to create superior strains of microorganisms for targeted biosynthetic goals. Here, I described an integrated workflow strategy using GEMs for strain design and biological discovery. Specific case studies of strain design and biological discovery using Escherichia coli genome-scale model are presented and discussed. The integrated workflow presented herein, when applied carefully would help guide future design strategies for high-performance microbial strains that have existing and forthcoming genome-scale metabolic models.
    Matched MeSH terms: Escherichia coli/genetics*; Genome, Bacterial/genetics*
  4. Nemati R, Lu J, Ramachandran V, Etemad A, Heidari M, Yahya MJ, et al.
    Genet. Mol. Res., 2016 Jun 20;15(2).
    PMID: 27323204 DOI: 10.4238/gmr.15026241
    The aim of this study was to determine whether C34T, a common polymorphism of the adenosine monophosphate deaminase 1 gene (AMPD1), is associated with essential hypertension (EH). We hypothesize that C34T is associated with the development of EH. A case-control design was used for this study. The DNA was extracted using a commercial kit from the whole blood of 200 patients with hypertension and 200 subjects without hypertension from selected Malaysian ethnicities (Malays, Chinese, and Indians). Polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) and agarose gel electrophoresis were used for genotyping. The C34T gene polymorphism of AMPD1 was significantly associated with EH in the Malaysian subjects (P < 0.0001). The genotype frequencies of CC, CT, and TT were 6%, 79%, and 15%, respectively, among hypertensive subjects, while no TT genotypes were observed in the normotensive subjects. Further, the frequency of hypertension was higher among T allele carriers than C carriers (OD = 9.94; 95%CI = 6.851-14.434). There were significant differences in the systolic blood pressure, diastolic blood pressure, and pulse pressure (P ˂ 0.05) between the normotensive and hypertensive Malaysian subjects; we believe those difference were caused by the C34T polymorphism. For the first time in Malaysia, the current study provides evidence that a common polymorphism of the AMPD1 gene (C34T) is strongly associated with EH.
    Matched MeSH terms: AMP Deaminase/genetics*; Hypertension/genetics*
  5. Ismail SI, Batzer JC, Harrington TC, Crous PW, Lavrov DV, Li H, et al.
    Mycologia, 2016 Mar-Apr;108(2):292-302.
    PMID: 26740537 DOI: 10.3852/15-036
    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi.
    Matched MeSH terms: DNA, Fungal/genetics; Fungi/genetics*
  6. Ho CL, Tan YC
    Phytochemistry, 2015 Jun;114:168-77.
    PMID: 25457484 DOI: 10.1016/j.phytochem.2014.10.016
    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed.
    Matched MeSH terms: Spores, Fungal/genetics; Ganoderma/genetics
  7. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
    Matched MeSH terms: Asparaginase/genetics; Bacterial Proteins/genetics
  8. Nissapatorn V, Sawangjaroen N, Lee R, Chandra Parija S
    Biomed Res Int, 2014;2014:780715.
    PMID: 25587540 DOI: 10.1155/2014/780715
    Matched MeSH terms: Parasites/genetics*; Parasitic Diseases/genetics*
  9. Li Y, Wen H, Chen L, Yin T
    PLoS One, 2014;9(12):e115024.
    PMID: 25502754 DOI: 10.1371/journal.pone.0115024
    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation.
    Matched MeSH terms: DNA, Bacterial/genetics; RNA, Ribosomal, 16S/genetics*
  10. Takigahira T, Kohyama TI, Suwito A, Kimura MT
    Genetica, 2015 Jun;143(3):279-85.
    PMID: 25663497 DOI: 10.1007/s10709-015-9824-7
    Drosophila bipectinata from Iriomote-jima (IR) is susceptible to the endoparasitoid Leptopilina victoriae from Kota Kinabalu (L. victoriae KK), but D. bipectinata from Kota Kinabalu (KK) and Bogor (BG) is resistant. The cross experiments between the resistant (KK) and susceptible (IR) populations of D. bipectinata suggested that the resistance to this parasitoid is a dominant trait and controlled by a single locus or few linked loci on an autosome. In the AFLP analysis using the IR, KK and BG populations of D. bipectinata and the resistant and susceptible populations derived from a mixed population of these three geographic populations, a DNA fragment almost specific to susceptible flies was detected. It also revealed that genes from the IR population were more frequently maintained in the mixed population compared with those from the KK and BG populations, suggesting that at least a number of genes from the IR population are more advantageous under the laboratory conditions. This explains our previous results that the resistance was lowered in the mixed population although the resistance itself is suggested to incur only low costs; i.e., the resistance gene(s) from the KK and BG populations would have been linked with some genes that are disadvantageous under the laboratory conditions.
    Matched MeSH terms: Drosophila/genetics*; Disease Resistance/genetics*
  11. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Arolu IW, Abdul Latif M
    C. R. Biol., 2015 Jan;338(1):1-11.
    PMID: 25468001 DOI: 10.1016/j.crvi.2014.10.007
    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security.
    Matched MeSH terms: Microsatellite Repeats/genetics*; Portulaca/genetics*
  12. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103440 DOI: 10.3109/19401736.2014.945554
    The mitochondrial genome sequence of the Morton Bay bug, Thenus orientalis, is documented, which makes it the second mitogenome for species of the family Scyllaridae and the ninth for members of the superfamily Palinuroidae. Thenus orientalis has a mitogenome of 16,826 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of the T. orientalis mitogenome is 31.31% for T, 23.77% for C, 31.05% for A, and 13.87% for G, with an AT bias of 62.36%. In addition to a duplicated trnS1 and several other tRNA gene rearrangements, the mitogenome gene order has novel protein coding gene order with the nad6 and cob genes translocated as a block to a location downstream of the nad3 gene.
    Matched MeSH terms: Mitochondria/genetics; Decapoda (Crustacea)/genetics*
  13. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Low ET, Ooi LC, et al.
    PLoS One, 2014;9(6):e99774.
    PMID: 24927412 DOI: 10.1371/journal.pone.0099774
    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels.
    Matched MeSH terms: Genes, Plant/genetics*; Arecaceae/genetics*
  14. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25090400 DOI: 10.3109/19401736.2014.945553
    The complete mitochondrial genome of the swimming crab Thalamita crenata was obtained from a partial genome scan using the MiSeq sequencing system. The Thalamita crenata mitogenome has 15,787 base pairs (70% A+T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 897 bp non-coding AT-rich region. This Thalamita mitogenome sequence is the first for the genus and the eighth for the family Portunidae.
    Matched MeSH terms: Mitochondria/genetics; Decapoda (Crustacea)/genetics*
  15. Tey S, Ahmad-Annuar A, Drew AP, Shahrizaila N, Nicholson GA, Kennerson ML
    Neurogenetics, 2014 Oct;15(4):229-35.
    PMID: 25028179 DOI: 10.1007/s10048-014-0414-0
    The cytoplasmic dynein heavy chain (DYNC1H1) gene has been increasingly associated with neurodegenerative disorders including axonal Charcot-Marie-Tooth disease (CMT2), intellectual disability and malformations of cortical development. In addition, evidence from mouse models (Loa, catabolite repressor-activator (Cra) and Sprawling (Swl)) has shown that mutations in Dync1h1 cause a range of neurodegenerative phenotypes with motor and sensory neuron involvement. In this current study, we examined the possible contribution of other cytoplasmic dynein subunits that bind to DYNC1H1 as a cause of inherited peripheral neuropathy. We focused on screening the cytoplasmic dynein intermediate, light intermediate and light chain genes in a cohort of families with inherited peripheral neuropathies. Nine genes were screened and ten variants were detected, but none was identified as pathogenic, indicating that cytoplasmic dynein intermediate, light intermediate and light chains are not a cause of neuropathy in our cohort.
    Matched MeSH terms: Peripheral Nervous System Diseases/genetics*; Cytoplasmic Dyneins/genetics*
  16. Al-Jamal HA, Jusoh SA, Yong AC, Asan JM, Hassan R, Johan MF
    Asian Pac J Cancer Prev, 2014;15(11):4555-61.
    PMID: 24969884
    BACKGROUND: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib.

    MATERIALS AND METHODS: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and IC50 values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting.

    RESULTS: The IC50 for imatinib on K562 was 362 nM compared to 3,952 nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down- regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562.

    CONCLUSIONS: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

    Matched MeSH terms: Phosphorylation/genetics*; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics*; Down-Regulation/genetics; Gene Expression/genetics; Genes, abl/genetics*; Apoptosis/genetics; Drug Resistance, Neoplasm/genetics; DNA Methylation/genetics*; Cell Proliferation/genetics; STAT3 Transcription Factor/genetics*; Suppressor of Cytokine Signaling Proteins/genetics*
  17. Choo SW, Heydari H, Tan TK, Siow CC, Beh CY, Wee WY, et al.
    ScientificWorldJournal, 2014;2014:569324.
    PMID: 25243218 DOI: 10.1155/2014/569324
    To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC) tool, and pathogenomics profiling tool (PathoProT). The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.
    Matched MeSH terms: Vibrio/genetics*; Genome, Bacterial/genetics*
  18. Grismer LL, Quah ES, Anuar M S S, Muin MA, Wood PL, Nor SA
    Zootaxa, 2014.
    PMID: 24943599 DOI: 10.11646/zootaxa.3815.1.3
    A newly discovered, diminutive, cave-dwelling, lowland species of the colubrid snake genus Lycodon Boie is described from a limestone cave along the Thai-Malaysian border in the state of Perlis, northwestern Peninsular Malaysia. Lycodon cavernicolus sp. nov. is most closely related to L. butleri Boulenger, an endemic, upland, forest-dwelling species from Peninsular Malaysia of the fasciatus group but is separated from L. butleri and all other species of the L. fasciatus group and the closely related L. ruhstrati group by having the combination of 245 (male) and 232 (female) ventral scales; 113 (male) and 92 (female) paired, subcaudal scales; a single precloacal plate; nine or 10 supralabials; 10 or 11 infralabials; a maximum total length of 508 mm (female); a relative tail length of 0.25-0.27; an immaculate venter in juveniles and dark-brown, posterior, ventral scale margins in adults; and dorsal and caudal bands in juveniles white. The discovery of L. cavernicolus sp. nov. adds to a rapidly growing list of newly discovered reptiles from karst regions and limestone forests of Peninsular Malaysia, underscoring the fact that these areas should be studied before they are quarried as they harbor a significant portion of the Peninsular Malaysia's herpetological diversity.
    Matched MeSH terms: Colubridae/genetics; Reptilian Proteins/genetics
  19. Asnet MJ, Rubia AG, Ramya G, Nagalakshmi RN, Shenbagarathai R
    J Vector Borne Dis, 2014 Jun;51(2):82-5.
    PMID: 24947213
    DENVirDB is a web portal that provides the sequence information and computationally curated information of dengue viral proteins. The advent of genomic technology has increased the sequences available in the public databases. In order to create relevant concise information on Dengue Virus (DENV), the genomic sequences were collected, analysed with the bioinformatics tools and presented as DENVirDB. It provides the comprehensive information of complete genome sequences of dengue virus isolates of Southeast Asia, viz. India, Bangladesh, Sri Lanka, East Timor, Philippines, Malaysia, Papua New Guinea, Brunei and China. DENVirDB also includes the structural and non-structural protein sequences of DENV. It intends to provide the integrated information on the physicochemical properties, topology, secondary structure, domain and structural properties for each protein sequences. It contains over 99 entries in complete genome sequences and 990 entries in protein sequences, respectively. Therefore, DENVirDB could serve as a user friendly database for researchers in acquiring sequences and proteomic information in one platform.
    Matched MeSH terms: Dengue Virus/genetics*; Genome, Viral/genetics*
  20. Smith DG, Ng J, George D, Trask JS, Houghton P, Singh B, et al.
    Am. J. Phys. Anthropol., 2014 Sep;155(1):136-48.
    PMID: 24979664 DOI: 10.1002/ajpa.22564
    Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Macaca fascicularis/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links