Displaying publications 1141 - 1160 of 2693 in total

Abstract:
Sort:
  1. Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M
    Food Chem Toxicol, 2018 Oct;120:305-320.
    PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028
    Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  2. Ezzat MI, Hassan M, Abdelhalim MA, El-Desoky AM, Mohamed SO, Ezzat SM
    Food Funct, 2021 Mar 18.
    PMID: 33734250 DOI: 10.1039/d0fo03402a
    Morinda citrifolia L. is a plant of the family Rubiaceae and is known as Indian mulberry or Noni in India. It is a perennial herb native to Southeast Asia and has been used over the years as a food supplement and medicinal plant. Noni fruits are reported to possess anticancer, fungicidal, antiviral and antiarthritic effects. The objective of our study is the screening of the immunomodulatory activity of the total extract, fractions, and isolated compounds of Noni fruits to identify their bioactive compounds. To achieve our goal, an ethanol extract (EE) was prepared from Noni fruits. Fractionation and purification of the EE were accomplished. The cell-mediated immune (CMI) response in prednisolone-induced immunosuppression rats was evaluated. The toxicity of the EE, fractions and isolated compounds on the differentiated THP-1 macrophage was assessed using the MTT viability assay. Moreover, the inflammation-related immune responses in lipopolysaccharide (LPS)-induced THP-1 macrophage activation were evaluated. Fractionation of the EE gave three fractions, dichloromethane (DCMF), water (WF) and methanol (MF). Purification of DCMF yielded stigmast-7-ene-3-ol (M1), 28-hydroxy-3β-acetoxy-9-dehydrogramisterol (M2), 3β-acetoxy-taraxast-20(30)-ene-21-ol (M3), 22-dehydroclerosterol (M4) and 22-dehydroclerosterol-3-O-β-d-glucopyranoside (M5), while purification of MF yielded quercetin (M6), hesperidin (M7), naringin (M9) and gallic acid (M8). The results revealed that DCMF elicited an increase in paw edema to the extent of 35.8%. All the tested samples had no cytotoxic effect on THP-1 macrophages. Co-treatment of the LPS-induced macrophages with DCMF, M2, M3, and M6 decreased the production of TNF-α, IL-1β, and IL-6/IL-10. The expression of iNOS, COX-2, and NF-κB decreased to 0.14 ± 0.02, 0.15 ± 0.02, and 0.17 ± 0.03, respectively, after co-treatment with LPS and DCMF. M2 attenuated the expression of iNOS and NF-κB to 0.18 ± 0.03 and 0.17 ± 0.03, respectively. Additionally, M3 attenuated the expression of iNOS to 0.18 ± 0.03, and after co-treatment with M6 and LPS, the expression of COX-2 and NF-κB was down-regulated to 0.2 ± 0.03. Our study proves the immunomodulatory effect of Noni fruits and specifies for the first time the compounds responsible for their activity.
    Matched MeSH terms: Rats, Inbred WF; Rats
  3. Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S
    Cardiovasc Toxicol, 2019 02;19(1):72-81.
    PMID: 30128816 DOI: 10.1007/s12012-018-9478-7
    Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
    Matched MeSH terms: Rats, Wistar; Rats
  4. Zakaria ZA, Kamisan FH, Kek TL, Salleh MZ
    Pharm Biol, 2020 Dec;58(1):478-489.
    PMID: 32476526 DOI: 10.1080/13880209.2020.1764058
    Context:Dicranopteris linearis L. (Gleicheniaceae) leaves have been reported to exert hepatoprotective activity.Objective: The hepatoprotective and antioxidant effects of ethyl acetate partition of D. linearis (EADL) are investigated.Materials and methods: EADL was subjected to antioxidant and anti-inflammatory studies, and phytochemical analyses. In vivo study involved six groups (n = 6) of overnight fasted Sprague Dawley rats. The test solutions [10% DMSO (normal), 10% DMSO (negative), 200 mg/kg silymarin (positive) or EADL (50, 250 or 500 mg/kg)] were administered orally once daily for 7 consecutive days followed by oral vehicle (only for normal) or hepatotoxic induction using 3 g/kg paracetamol (PCM).Results: EADL exerted ≈ 90% radical scavenging effects based on the DPPH and superoxide anion radical scavenging assays, high antioxidant capacity in the oxygen radical absorbance capacity assay (≈ 555,000 units), high total phenolic content (≈ 350 mg GAE/100 g extract) (p 
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  5. Ahmad N, Amin MC, Mahali SM, Ismail I, Chuang VT
    Mol Pharm, 2014 Nov 3;11(11):4130-42.
    PMID: 25252107 DOI: 10.1021/mp5003015
    Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.
    Matched MeSH terms: Rats, Wistar; Rats
  6. Konuri A, Bhat KMR, Rai KS, Gourishetti K, Phaneendra M YS
    Anat Sci Int, 2021 Mar;96(2):197-211.
    PMID: 32944877 DOI: 10.1007/s12565-020-00574-8
    Cognitive impairment due to natural or surgical menopause is always associated with estrogen deficiency leading to reduced brain-derived neurotrophic factor (BDNF). Reduced BDNF levels in menopause affect neuronal maturation, survival, axonal and dendritic arborization and the maintenance of dendritic spine density. Conventional long-term estrogen replacement therapy reported causing the risk of venous thromboembolism and breast cancer. To overcome these undesirable effects, phytoestrogens have been used in menopause-induced condition without the risk of side effects. Therefore, the aim of the present study was to investigate the effect of dietary supplementation of fenugreek seed extract (FG) either alone or in combination with choline-DHA on BDNF and dendritic arborization of pyramidal neurons in CA1 and CA3 regions of the hippocampus in ovariectomized rats. Female Wistar rats of 9-10 months old were divided into six groups as normal control (NC); ovariectomy (OVX); OVX + FG; OVX + choline-DHA; OVX + FG + choline-DHA; and OVX + estradiol. All the groups, except NC, were ovariectomized. After 2 weeks of ovariectomy, dietary supplementation was initiated for a period of 30 days. After supplementation, behavioral studies, BDNF levels and dendritic arborization were estimated. Ovariectomized (OVX) rats showed reduced BDNF levels, dendritic branching points and dendritic intersections of pyramidal neurons in CA1 and CA3 regions of the hippocampus. OVX rats supplemented with FG with choline-DHA showed significantly improved BDNF levels, dendritic branching points and dendritic intersections. These results are demonstrating that FG with choline-DHA supplementation can be an alternative for estrogen replacement therapy to modulate menopause-induced learning and memory deficits.
    Matched MeSH terms: Rats, Wistar; Rats
  7. Lim WL, Soga T, Parhar IS
    Dev Neurosci, 2014;36(2):95-107.
    PMID: 24713635 DOI: 10.1159/000360416
    Migration and final positioning of gonadotropin-releasing hormone (GnRH) neurons in the preoptic area (POA) is critical for reproduction. It is known that maternal dexamethasone (DEX) exposure impairs reproductive function and behaviour in the offspring. However, it is still not known whether maternal DEX exposure affects the postnatal GnRH neurons in the offspring. This study determined the neuronal movement of enhanced green fluorescent protein (EGFP)-tagged GnRH neurons in slice culture of postnatal day 0 (P0), P5 and P50-60 transgenic male rats. Effect of maternal DEX treatment on EGFP-GnRH neuronal movement and F-actin distribution on GnRH neurons at P0 stage were studied. Time-lapse analysis of P0 and P5 EGFP-GnRH neurons displayed active cellular movement within the POA compared to young adult P50-60 stages, suggesting possible fine-tuning movement for positioning of early postnatal GnRH neurons. The DEX-treated EGFP-GnRH neurons demonstrated decreased motility in the POA and reduced F-actin distribution in the GnRH neurons at 60 h culture compared to the vehicle-treated. These results suggest that the P0 GnRH neuronal movement in the POA is altered by maternal DEX exposure, which possibly disrupts the fine-tuning process for positioning and development of early postnatal GnRH neurons in the brain, potentially linked to reproductive dysfunction in adulthood.
    Matched MeSH terms: Rats; Rats, Transgenic
  8. Vântu A, Ghertescu D, Fiscă C, Mărginean A, Hutanu A, Gheban D, et al.
    Malays J Pathol, 2019 Apr;41(1):25-32.
    PMID: 31025634
    INTRODUCTION: Experimental models are essential for clarifying the pathogenesis of atherosclerosis in the context of diabetes mellitus (DM). We aimed to evaluate the presence and the magnitude of several factors known to promote atherogenesis, and to assess the potential of a pro-atherogenic environment to stimulate the development of atherosclerotic lesions in a rat model of long-term type 1 DM.

    MATERIALS AND METHODS: Six control and five DM Wistar rats were evaluated. DM was induced at 11 weeks of age using streptozotocin (STZ; 60 mg/kg, intraperitoneal). Animals were monitored up to 38 weeks of age, when plasma glucose, lipid profile, and markers specific for systemic inflammation, endothelial dysfunction, and oxidative stress were measured. The amount of fat within the aortic wall was assessed semiquantitatively using Oil Red O staining.

    RESULTS: Diabetic rats presented significantly higher plasma glucose (p < 0.001), total cholesterol and triglycerides (both p = 0.02), high-sensitivity C-reactive protein (p = 0.01), and vascular endothelial growth factor (p = 0.04) levels, and significantly lower interleukin-10 (p = 0.04), superoxide dismutase (p < 0.01), and glutathione peroxidase (p = 0.01) levels than the control rats. Mild (grade 1) atherosclerotic lesions were observed in the aortic wall of 80% of the diabetic rats and in none of the control rats.

    CONCLUSIONS: This study presents a STZ-induced type 1 DM rat model with one of the longest follow-ups in the literature. In this model, long-term DM created a highly pro-atherogenic environment characterised by hyperglycemia, dyslipidemia, systemic inflammation, endothelial dysfunction, and oxidative stress that resulted in the development of early aortic atherosclerotic lesions.

    Matched MeSH terms: Rats, Wistar; Rats
  9. Irvine F, Wallace AV, Sarawak SR, Houslay MD
    Biochem. J., 1993 Jul 01;293 ( Pt 1):249-53.
    PMID: 8392336
    Absence of physiological concentrations of extracellular Ca2+ in the Krebs-Henseleit incubation buffer did not affect the ability of 10 nM glucagon (< 5%) to increase hepatocyte intracellular cyclic AMP concentrations, but severely ablated (by approximately 70%) the ability of 10 nM insulin to decrease these elevated concentrations. Cyclic AMP metabolism is determined by production by adenylate cyclase and degradation by cyclic AMP phosphodiesterase (PDE). In the absence of added extracellular Ca2+ (2.5 mM), insulin's ability to activate PDE activity was selectively compromised, showing a failure of insulin to activate two of the three insulin-stimulated activities, namely the 'dense-vesicle' and peripheral plasma-membrane (PPM) PDEs. In the absence of added Ca2+, insulin's ability to inhibit adenylate cyclase activity in intact hepatocytes was decreased dramatically. Vasopressin and adrenaline (+ propranolol) failed to elicit the activation of either the 'dense-vesicle' or the PPM-PDEs. The presence of physiological concentrations of extracellular Ca2+ in the incubation medium is shown to be important for the appropriate generation of insulin's actions on cyclic AMP metabolism.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  10. Suhaimi FW, Hassan Z, Mansor SM, Müller CP
    Neurosci Lett, 2021 02 06;745:135632.
    PMID: 33444671 DOI: 10.1016/j.neulet.2021.135632
    Mitragynine is the main alkaloid isolated from the leaves of Mitragyna speciosa Korth (Kratom). Kratom has been widely used to relieve pain and opioid withdrawal symptoms in humans but may also cause memory deficits. Here we investigated the changes in brain electroencephalogram (EEG) activity after acute and chronic exposure to mitragynine in freely moving rats. Vehicle, morphine (5 mg/kg) or mitragynine (1, 5 and 10 mg/kg) were administered for 28 days, and EEG activity was repeatedly recorded from the frontal cortex, neocortex and hippocampus. Repeated exposure to mitragynine increased delta, but decreased alpha powers in both cortical regions. It further decreased delta power in the hippocampus. These findings suggest that acute and chronic mitragynine can have profound effects on EEG activity, which may underlie effects on behavioral activity and cognition, particularly learning and memory function.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  11. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Babji AS, Abubakar AA, et al.
    Theriogenology, 2019 Mar 01;126:310-319.
    PMID: 30605790 DOI: 10.1016/j.theriogenology.2018.12.026
    This study was conducted to determine the effect of edible bird's nest (EBN) supplement on uterine function and embryo-implantation rate. A total of 24 adult female rats, divided equally into four groups, were treated with different doses of EBN for 8 weeks. In the last week of treatment, intact fertile male rats were introduced into each group (three per group) for overnight for mating. On day 7 post-mating (post-implantation), blood samples were collected from the hearts of anaesthetised rats that were later sacrificed. The uteri were removed for assessment of embryo implantation rate, histological and electron microscopic examination, and immunohistochemical analyses. Results showed that as the concentration of EBN supplemented increased, the pregnancy and embryo implantation rates were also increased in the treated groups; significantly at G3 and G4. Although histological evaluation did not show much difference among the groups, scanning electron microscopic examination showed enhanced development of elongated microvilli and pinopods in G4. Results also revealed up-regulated expressions of epidermal growth factor (EGF), EGF receptor (EGFR), vascular endothelial growth factor (VEGF), proliferating cell nulear antigen (PCNA), and progesterone and estrogen receptors (P4R, E2R) in the uteri of treated groups. Moreover, plasma E2, P4, growth hormone (GH) and prolactin (P) levels were higher (p 
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  12. Fazel MF, Abu IF, Mohamad MHN, Agarwal R, Iezhitsa I, Bakar NS, et al.
    PLoS One, 2020;15(7):e0236450.
    PMID: 32706792 DOI: 10.1371/journal.pone.0236450
    Retinal ganglion cell (RGC) loss and optic neuropathy, both hallmarks of glaucoma, have been shown to involve N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity. This study investigated the neuroprotective effects of Philanthotoxin (PhTX)-343 in NMDA-induced retinal injury to alleviate ensuing visual impairments. Sprague-Dawley rats were divided into three; Group I was intravitreally injected with phosphate buffer saline as the control, Group II was injected with NMDA (160 nM) to induce retinal excitotoxic injury, while Group III was injected with PhTX-343 (160 nM) 24 h prior to excitotoxicity induction with NMDA. Rats were subjected to visual behaviour tests seven days post-treatment and subsequently euthanized. Rat retinas and optic nerves were subjected to H&E and toluidine blue staining, respectively. Histological assessments showed that NMDA exposure resulted in significant loss of retinal cell nuclei and thinning of ganglion cell layer (GCL). PhTX-343 pre-treatment prevented NMDA-induced changes where the RGC layer morphology is similar to the control. The numbers of nuclei in the NMDA group were markedly lower compared to the control (p<0.05). PhTX-343 group had significantly higher numbers of nuclei within 100 μm length and 100 μm2 area of GCL (2.9- and 1.7-fold, respectively) compared to NMDA group (p<0.05). PhTX-343 group also displayed lesser optic nerve fibres degeneration compared to NMDA group which showed vacuolation in all sections. In the visual behaviour test, the NMDA group recorded higher total distance travelled, and lower total immobile time and episodes compared to the control and PhTX-343 groups (p<0.05). Object recognition tests showed that the rats in PhTX-343 group could recognize objects better, whereas the same objects were identified as novel by NMDA rats despite multiple exposures (p<0.05). Visual performances in the PhTX-343 group were all comparable with the control (p>0.05). These findings suggested that PhTX-343 inhibit retinal cell loss, optic nerve damage, and visual impairments in NMDA-induced rats.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  13. Ramlan H, Damanhuri HA
    Exp Gerontol, 2020 01;129:110779.
    PMID: 31705967 DOI: 10.1016/j.exger.2019.110779
    BACKGROUND: Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function.

    OBJECTIVE: This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response.

    METHOD: Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR.

    RESULTS: This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased.

    CONCLUSION: These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  14. Rahman MA, Hossain S, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2020;22(1):93-103.
    PMID: 32464001 DOI: 10.1615/IntJMedMushrooms.2020033383
    Hypercholesterolemia has been implicated as one of the pathomechanistic factors of Alzheimer's disease (AD), the most common neurodegenerative disorder affecting memory and learning abilities. In the present study, ameliorative effect of hot water extract (HWE) of mushroom Ganoderma lucidum to the memory and learning related behavioral performance of hypercholesterolemic and AD rats was investigated using Morris water maze (MWM). Male Wistar rats were randomly grouped into control, extract fed control, hypercholesterolemic, extract fed hypercholesterolemic, AD, and extract fed AD groups, each group containing 8 animals. Hypercholesterolemia was induced in rats by adding 1% cholesterol and 1% cholic acid with the basal diet of the respective group. Alzheimer's disease model rats were prepared through infusion of amyloid β(1-42) to the right ventricle. Memory and learning related performance of all the rats was tested for 6 consecutive days that included time taken to reach the submerged platform (sec) and distance traveled (m). G. lucidum HWE fed rats took less time and traveled less distance to find the submerged platform, which indicates the spatial learning and memory related behavioral amelioration of the extract fed rats compared with their non-fed counterparts. Thus, usage of G. lucidum seems promising in withstanding hypercholesterolemia-induced Alzheimer's disease pathogenesis.
    Matched MeSH terms: Rats, Wistar; Rats
  15. D'Souza UJ, Narayana K, Zain A, Raju S, Nizam HM, Noriah O
    Folia Morphol (Warsz), 2006 Feb;65(1):6-10.
    PMID: 16783728
    The effects of exposure to low doses of paraquat, a herbicide, via the dermal route were studied on the spermatozoa of Sprague-Dawley rats. Paraquat (1, 1'-dimethyl-4, 4'-bipyridinium dichloride) was administered once a day for five days, at intervals of 24 h at 0, 6, 15 and 30 mg/kg, and the rats were sacrificed on days 7, 14, 28, and 42 after the last exposure. The sperm suspensions were obtained by mincing the caudae epididymes and ductus deferens for the purpose of performing a sperm morphology test, sperm count and analysis of sperm mortality and sperm motility, as per the standard procedures. The sperm count was decreased (p < 0.05) only on days 7 and 14 but sperm abnormalities increased on all days (p < 0.05). Sperm mortality increased at higher dose-levels (p < 0.05) except on day 42, and motility was affected by 30 mg/kg only on day 42. In conclusion, paraquat is a genotoxic and cytotoxic agent to germ cells in the male rat.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  16. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, et al.
    Pathology, 2010 Apr;42(3):259-66.
    PMID: 20350220 DOI: 10.3109/00313021003631304
    We investigated the role of renal sympathetic innervation in the deterioration of renal haemodynamic and excretory functions during the early post-ischaemic phase of renal ischaemia/reperfusion injury.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  17. D'Souza UJ
    Asian J Androl, 2003 Sep;5(3):217-20.
    PMID: 12937805
    To evaluate the effect of tamoxifen citrate on male reproductive system of rat.
    Matched MeSH terms: Rats, Wistar; Rats
  18. Ashhar Z, Yusof NA, Ahmad Saad FF, Mohd Nor SM, Mohammad F, Bahrin Wan Kamal WH, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526838 DOI: 10.3390/molecules25112668
    Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  19. Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ
    Steroids, 2020 03;155:108553.
    PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553
    Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  20. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links