Displaying publications 101 - 120 of 142 in total

Abstract:
Sort:
  1. Mohamed Yusoff AA, Abd Radzak SM, Mohd Khair SZN, Abdullah JM
    Exp Oncol, 2021 06;43(2):159-167.
    PMID: 34190524
    BACKGROUND: To date, BRAF mutations in brain tumor patients have not been characterized in the Malaysian population. Based on the numerous reported studies, there are main mutations that exist in BRAF gene in various types of cancers. A missense mutation in codon 600 of the BRAF nuclear oncogene (BRAFV600E) is the most prevalent hotspot point mutation that has been identified in multiple human malignancies.

    AIM: We here aimed to find out the frequency of BRAFV600E mutation in a series of Malaysian patients with brain tumors and if any association exists between BRAFV600E mutation and clinicopathological features of patients.

    MATERIAL AND METHODS: Fresh frozen tumor tissue samples from 50 Malaysian brain tumor patients were analyzed for BRAFV600E mutational status, and its correlation with clinicopathological features (including age, gender, and tumor localization such as intra-axial: within the brain substance or extra-axial: outside the brain substance) was examined.

    RESULTS: The overall BRAFV600E mutation frequency was determined to be 22% (in 11 of 50 patients). BRAFV600E was significantly correlated with the tumor location group, which shows BRAFV600E was more frequent in the intra-axial tumor than the extra-axial tumor group. In this study, we also observed that male patients were slightly more susceptible to BRAFV600E mutation, and this mutation was predominant in patients of the age group 

  2. Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, et al.
    Sensors (Basel), 2017 Dec 02;17(12).
    PMID: 29207463 DOI: 10.3390/s17122789
    This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB) was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV) method. The detection range of DNA biosensor was obtained from of 10-6-10-9 M with the detection limit of 7.853 × 10-7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.
  3. Omar FN, Hafid HS, Samsu Baharuddin A, Mohammed MAP, Abdullah J
    Planta, 2017 Sep;246(3):567-577.
    PMID: 28620814 DOI: 10.1007/s00425-017-2717-5
    MAIN CONCLUSION: X-ray microtomography results revealed that delignification process damaged the oil palm fibers, which correlated well with reduction of lignin components and increase of the phenolic content. Biodegradation investigation of natural fibers normally focuses on physico-chemical analysis, with less emphasis on physical aspect like fiber structures affect from microbial activity. In this work, the performance of Pycnoporus sanguineus to delignify oil palm empty fruit bunch fibers through solid-state fermentation utilizing various ratio of POME sludge was reported. In addition to tensile testing, physico-chemical and X-ray microtomography (µ-CT) analyses on the oil palm fibers were conducted to determine the effectiveness of the degradation process. The best ratio of fiber to fungi (60:40) was chosen based on the highest lignin loss and total phenolic content values and further investigation was performed to obtain fermentation kinetics data of both laccase and manganese peroxidase. µ-CT results revealed that delignification process damaged the pre-treated and untreated fibers structure, as evident from volume reduction after degradation process. This is correlated with reduction of lignin component and increase of the phenolic content, as well as lower stress-strain curves of the pre-treated fibers compared to the untreated ones (from tensile testing). It is suggested that P. sanguineus preferred to consume the outer layer of the fiber, before it penetrates through the cellular structure of the inner fiber.
  4. Chan HC, Aasim WA, Abdullah NM, Naing NN, Abdullah JM, Saffari MH, et al.
    Singapore Med J, 2005 May;46(5):219-23.
    PMID: 15858690
    Paediatric minor head injuries (MHI) are just as common in both bigger and smaller towns in Malaysia. Urban-based MHI are due more to motor vehicular injuries compared to rural-based MHI which are mainly due to non-motor vehicular injuries. The main objectives of this study were to compare incidence of admitted patients to accident and emergency departments of hospitals in two different settings in Malaysia, namely: Ipoh (urban-based) and Kota Bharu (rural-based); and to correlate to demographical characteristics, types of accident, clinical signs and symptoms, radiological and computed tomography (CT) findings, management; and finally, to determine clinical predictors of intracranial injury in MHI.
  5. Abdullah JM, Rahman ZA, Ariff AR, Jaafar H, Phang KS
    Singapore Med J, 2004 Jun;45(6):286-8.
    PMID: 15181525
    Rhabdoid tumour is a rare childhood tumour with poor prognosis. We report a 13-month-old Malay girl suffering from this tumour that was located at the left fronto-temporo-parietal region of the brain. Computed tomography showed a large irregular enhancing mass that caused obstructive hydrocephalus. The tumour did not reduce in size after three operations and finally the patient succumbed to the disease four months after diagnosis.
  6. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
  7. Fartas FM, Abdullah J, Yusof NA, Sulaiman Y, Saiman MI
    Sensors (Basel), 2017 May 16;17(5).
    PMID: 28509848 DOI: 10.3390/s17051132
    In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 μM with sensitivity of 0.624 μA/μM and the limit of detection (LOD) of 0.016 μM (S/N = 3). The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC) method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.
  8. Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540931 DOI: 10.3390/polym13030478
    In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan-graphene oxide (chitosan-GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR-chitosan-GO thin film, while for CdS QD-chitosan-GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian-Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan-GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR-chitosan-GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.
  9. Mat Zaid MH, Abdullah J, Rozi N, Mohamad Rozlan AA, Abu Hanifah S
    Nanomaterials (Basel), 2020 Jul 10;10(7).
    PMID: 32664193 DOI: 10.3390/nano10071346
    A simple and sensitive aptasensor based on conductive carbon nanodots (CDs) was fabricated for the detection of 17ß-Estradiol (E2). In the present study, the hydrothermal synthesis of carbon nanodots was successfully electrodeposited on a screen-printed electrode (SPE) as a platform for immobilization of 76-mer aptamer probe. The morphology and structure of the nanomaterial were characterized by UV-visible absorption spectra, Fluorescence spectra, Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Moreover, cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the electrochemical performance of the prepared electrodes. Subsequently, impedimetric (EIS) measurements were employed to investigate the relative impedances changes before and after E2 binding, which results in a linear relationship of E2 concentration in the range of 1.0 × 10-7 to 1.0 × 10 -12 M, with a detection limit of 0.5 × 10-12 M. Moreover, the developed biosensor showed high selectivity toward E2 and exhibited excellent discrimination against progesterone (PRG), estriol (E3) and bisphenol A (BPA), respectively. Moreover, the average recovery rate of spiked river water samples with E2 ranged from 98.2% to 103.8%, with relative standard deviations between 1.1% and 3.8%, revealing the potential application of the present biosensor for E2 detection in water samples.
  10. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, et al.
    Int J Nanomedicine, 2016;11:413-28.
    PMID: 26858524 DOI: 10.2147/IJN.S90198
    In this study, we synthesized a multifunctional nanoparticulate system with specific targeting, imaging, and drug delivering functionalities by following a three-step protocol that operates at room temperature and solely in aqueous media. The synthesis involves the encapsulation of luminescent Mn:ZnS quantum dots (QDs) with chitosan not only as a stabilizer in biological environment, but also to further provide active binding sites for the conjugation of other biomolecules. Folic acid was incorporated as targeting agent for the specific targeting of the nanocarrier toward the cells overexpressing folate receptors. Thus, the formed composite emits orange-red fluorescence around 600 nm and investigated to the highest intensity at Mn(2+) doping concentration of 15 at.% and relatively more stable at low acidic and low alkaline pH levels. The structural characteristics and optical properties were thoroughly analyzed by using Fourier transform infrared, X-ray diffraction, dynamic light scattering, ultraviolet-visible, and fluorescence spectroscopy. Further characterization was conducted using thermogravimetric analysis, high-resolution transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy. The cell viability and proliferation studies by means of MTT assay have demonstrated that the as-synthesized composites do not exhibit any toxicity toward the human breast cell line MCF-10 (noncancer) and the breast cancer cell lines (MCF-7 and MDA-MB-231) up to a 500 µg/mL concentration. The cellular uptake of the nanocomposites was assayed by confocal laser scanning microscope by taking advantage of the conjugated Mn:ZnS QDs as fluorescence makers. The result showed that the functionalization of the chitosan-encapsulated QDs with folic acid enhanced the internalization and binding affinity of the nanocarrier toward folate receptor-overexpressed cells. Therefore, we hypothesized that due to the nontoxic nature of the composite, the as-synthesized nanoparticulate system can be used as a promising candidate for theranostic applications, especially for a simultaneous targeted drug delivery and cellular imaging.
  11. Che Omar SN, Ong Abdullah J, Khairoji KA, Chin Chin S, Hamid M
    PMID: 23662136 DOI: 10.1155/2013/459089
    Melastoma malabathricum Linn. is a shrub that comes with beautiful pink or purple flowers and has berries-like fruits rich in anthocyanins. This study was carried out with the aim to evaluate the inhibitory activities of different concentrations of the M. malabathricum Linn. flower and fruit crude extracts against Listeria monocytogenes IMR L55, Staphylococcus aureus IMR S244, Escherichia coli IMR E30, and Salmonella typhimurium IMR S100 using the disc diffusion method. The lowest concentrations of the extracts producing inhibition zones against the test microorganisms were used to determine their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). In addition, the growth of Listeria monocytogenes IMR L55 and Staphylococcus aureus IMR S244 grown in medium supplemented with the respective extracts at different temperatures (4°C, 25°C, and 37°C) and pHs (4, 6, 7, and 8) was determined.
  12. Hassan S, Abdullah J, Abdullah B, Jihan Wd S, Jaafar H, Abdullah S
    Malays J Med Sci, 2007 Jan;14(1):18-22.
    PMID: 22593647 MyJurnal
    Juvenile nasopharyngeal angiofibroma (JNA) is a benign but locally invasive tumour. Patients are usually in their adolescent age and present with epistaxis and nasal blockage. Diagnosis is based on clinical evaluation and the C.T. scan findings. Pre-operative superselective embolisation (SSE) and surgical excision is the treatment of choice. The out patient clinic of ORL-HNS hospital of University Science Malaysia received 25 referrals, all male, majority between 9-13 years of age and few adolescents. Clinically the patients were consistent with symptoms of recurrent epistaxis and nasal blockage. They reported from October 1998 to October 2001 from with in the state of Kelantan and the nearby states of Pahang, Kedah and Terenganu. Diagnosis was mostly made on typical radiological findings and the tumours were classified accordingly into four stages. SSE and surgical excision was carried out in all cases. Regular follow-up helped us to identify early recurrences which were treated with salvage surgery or radiotherapy in one case with extensive intracranial extension. A retrospective review of presenting features, diagnostic difficulties, surgical approaches and its outcome is presented. Maxillary swing procedure performed in three cases as a new surgical option in the management of JNA is also discussed.
    Study site: ENT clinic, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
  13. Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, et al.
    Biosens Bioelectron, 2015 May 15;67:129-33.
    PMID: 25113659 DOI: 10.1016/j.bios.2014.07.056
    A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM.
  14. Tijjani Salihu A, Muthuraju S, Aziz Mohamed Yusoff A, Ahmad F, Zulkifli Mustafa M, Jaafar H, et al.
    Behav Brain Res, 2016 10 01;312:374-84.
    PMID: 27327104 DOI: 10.1016/j.bbr.2016.06.034
    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment.
  15. Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al.
    Asian Pac J Cancer Prev, 2018 Dec 25;19(12):3317-3320.
    PMID: 30583336
    Objective: Chronic Myeloid Leukemia (CML) is caused by a reciprocal translocation between chromosomes 9
    and 22, t(9;22) (q34;q11) which encodes for the BCR-ABL fusion protein. Discovery of Imatinib Mesylate (IM) as
    first line therapy has brought tremendous improvement in the management of CML. However, emergence of point
    mutations within the BCR-ABL gene particularly T315I mutation, affects a common BCR-ABL kinase contact residue
    which impairs drug binding thus contribute to treatment resistance. This study aims to investigate the BCR-ABL T315I
    mutation in Malaysian patients with CML. Methods: A total of 285 patients diagnosed with CML were included in this
    study. Mutation detection was performed using qualitative real-time PCR (qPCR). Results: Fifteen out of 285 samples
    (5.26%) were positive for T315I mutations after amplification with real-time PCR assay. From the total number of
    positive samples, six patients were in accelerated phase (AP), four in chronic phase (CP) and five in blast crisis (BC).
    Conclusion: Mutation testing is recommended for choosing various tyrosine kinase inhibitors (TKIs) to optimize
    outcomes for both cases of treatment failure or suboptimal response to imatinib. Therefore, detection of T315I mutation
    in CML patients are clinically useful in the selection of appropriate treatment strategies to prevent disease progression.
  16. Wan Abdullah WMAN, Tan NP, Low LY, Loh JY, Wee CY, Md Taib AZ, et al.
    Plant Physiol Biochem, 2021 Apr;161:131-142.
    PMID: 33581621 DOI: 10.1016/j.plaphy.2021.01.046
    Lignosulfonate (LS) is a commonly used to promote plant growth. However, the underlying growth promoting responses of LS in plant remain unknown. Therefore, this study was undertaken to elucidate the underlying growth promoting mechanisms of LS, specifically calcium lignosulfonate (CaLS). Addition of 100 mg/L CaLS in phytohormone-free media enhanced recalcitrant indica rice cv. MR219 callus proliferation rate and adventitious root formation. Both, auxin related genes (OsNIT1, OsTAA1 and OsYUC1) and tryptophan biosynthesis proteins were upregulated in CaLS-treated calli which corroborated with increased of endogenous auxin content. Moreover, increment of OsWOX11 gene on CaLS-treated calli implying that the raised of endogenous auxin was utilized as a cue to enhance adventitious root development. Besides, CaLS-treated calli showed higher nutrient ions content with major increment in calcium and potassium ions. Consistently, increased of potassium protein kinases genes (OsAKT1, OsHAK5, OsCBL, OsCIPK23 and OsCamk1) were also recorded. In CaLS treated calli, the significant increase of calcium ion was observed starting from week one while potassium ion only recorded significant increase on week two onwards, suggesting that increment of potassium ion might be dependent on the calcium ion content in the plant cell. Additionally, reduced callus blackening was also coherent with downregulation of ROS scavenging protein and reduced H2O2 content in CaLS-treated calli suggesting the role of CaLS in mediating cellular homeostasis via prevention of oxidative burst in the cell. Taken together, CaLS successfully improved MR219 callus proliferation and root formation by increasing endogenous auxin synthesis, enhancing nutrients uptake and regulating cellular homeostasis.
  17. Kok AD, Mohd Yusoff NF, Sekeli R, Wee CY, Lamasudin DU, Ong-Abdullah J, et al.
    Front Plant Sci, 2021;12:667434.
    PMID: 34149763 DOI: 10.3389/fpls.2021.667434
    Pluronic F-68 (PF-68) is a non-ionic surfactant used in plant tissue culture as a growth additive. Despite its usage as a plant growth enhancer, the mechanism underlying the growth-promoting effects of PF-68 remains largely unknown. Hence, this study was undertaken to elucidate the growth-promoting mechanism of PF-68 using recalcitrant MR 219 callus as a model. Supplementation of 0.04% PF-68 (optimum concentration) was shown to enhance callus proliferation. The treated callus recorded enhanced sugar content, protein content, and glutamate synthase activity as exemplified in the comparative proteome analysis, showing protein abundance involved in carbohydrate metabolism (alpha amylase), protein biosynthesis (ribosomal proteins), and nitrogen metabolism (glutamate synthase), which are crucial to plant growth and development. Moreover, an increase in nutrients uptake was also noted with potassium topping the list, suggesting a vital role of K in governing plant growth. In contrast, 0.10% PF-68 (high concentration) induced stress response in the callus, revealing an increment in phenylalanine ammonia lyase activity, malondialdehyde content, and peroxidase activity, which were consistent with high abundance of phenylalanine ammonia lyase, peroxidase, and peroxiredoxin proteins detected and concomitant with a reduced level of esterase activity. The data highlighted that incorporation of PF-68 at optimum concentration improved callus proliferation of recalcitrant MR 219 through enhanced carbohydrate metabolism, nitrogen metabolism, and nutrient uptake. However, growth-promoting effects of PF-68 are concentration dependent.
  18. Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1749-1755.
    PMID: 31244296 DOI: 10.31557/APJCP.2019.20.6.1749
    Objective: The most frequent acquired molecular abnormalities and important prognostic indicators in patients
    with Acute Myeloid Leukaemia (AML) are fms-like tyrosine kinase-3 gene (FLT3) and nucleophosmin-1 (NPM1)
    mutations. Our study aims to develop a cost effective and comprehensive in-house conventional PCR method for
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations and to evaluate the frequency of these mutations in patients
    with cytogenetically normal (CN) AML in our population. Methods: A total of 199 samples from AML patients (95
    women, 104 men) were included in the study. Mutation analyses were performed using polymerase chain reaction
    (PCR) and gene sequencing. Result: Sixty-eight patients were positive for the mutations. FLT3-ITD mutations were
    detected in 32 patients (16.1%), followed by FLT3-D835 in 5 (2.5%) and NPM1 in 54 (27.1%). Double mutations of
    NPM1 and FLT3-ITD were detected in 23 cases (11.6%). Assays validation were performed using Sanger sequencing
    and showed 100% concordance with in house method. Conclusion: The optimized in-house PCR assays for the
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations in AML patients were robust, less labour intensive and cost
    effective. These assays can be used as diagnostic tools for mutation detection in AML patients since identification of
    these mutations are important for prognostication and optimization of patient care.
  19. Kok AD, Wan Abdullah WMAN, Tang CN, Low LY, Yuswan MH, Ong-Abdullah J, et al.
    Sci Rep, 2021 06 24;11(1):13226.
    PMID: 34168171 DOI: 10.1038/s41598-021-92401-x
    Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.
  20. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links